Vishal Asnani

OBJECTIVE

Innovative and dedicated media forensics professional seeking a dynamic role where my advanced skills in media provenance, analysis, detection, and verification can be utilized to counter misinformation and enhance the trustworthiness of visual information. I am committed to leveraging cutting-edge technologies and collaborating with multidisciplinary teams to develop impactful and reliable solutions.

EDUCATION

Ph.D. In Computer Science and Engineering Advisor: Dr. Xiaoming Liu Michigan State University, East Lansing, USA GPA: 3.75/4.0, Graduation: December 2024 | Jan. 2021-Dec. 2024|

B.E.(Hons.) Electronics and Instrumentation Engineering (Minor in Finance) Birla Institute of Technology and Science, Pilani, India CGPA: 8.01/10.0

| Aug. 2015- May 2019|

PUBLICATIONS

- Vishal Asnani, John Collomosse, Tu Bui, Xiaoming Liu, and Shruti Agarwal. "ProMark: Proactive Diffusion Watermarking for Causal Attribution." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
- Vishal Asnani, Abhinav Kumar, Suya You, and Xiaoming Liu. "PrObeD: Proactive Object Detection Wrapper." Advances in Neural Information Processing Systems (NeuRIPS), 2023.
- Vishal Asnani, Xi Yin, Tal Hassner, Xiaoming Liu, "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images", In IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 2023.
- Vishal Asnani, Xi Yin, Tal Hassner, Xiaoming Liu, "MaLP: Manipulation Localization Using a Proactive Scheme," In Proceeding of IEEE Computer Vision and Pattern Recognition (CVPR), 2023.
- Vishal Asnani, Xi Yin, Tal Hassner, Sijia Liu, Xiaoming Liu, "Proactive Image Manipulation Detection," In Proceeding of IEEE Computer Vision and Pattern Recognition (CVPR), 2022.

WORK EXPERIENCE

Adobe, San Jose, USA: Research Scientist Intern

- Research scientist intern in the **Cross-representation learning (XRL) team**.
- Real-time practical scenario of Causal Training Concept attribution for the synthetic images generated by a generative model.
- The concepts are watermarked in an online manner without any costly training.

Adobe, San Jose, USA: Research Scientist Intern

- Research scientist intern in the Cross-representation learning (XRL) team.
- Working on the **novel problem** of **Causal Training Concept attribution** for the synthetic images generated by a generative model.
- The problem involves attributing different artist's concept images which influenced the generation of the synthetic images.
- We use a **proactive scheme** of embedding different **watermarks** into the images, to later **recover** these watermarks for attribution.

Texas Instruments, Bengaluru, India: Analog design intern

- Analog design intern in Multiphase and Control solutions team.
- Developed a Perl Script to create vector-based patterns for SWD and PMBus commands used in the test program.
- Patterns were appended to the test program beforehand, thereby saving test time.
- Efficient implementation of SWD and PMBus patterns saved approximately 74% execution time.

PROJECTS

- 1. Diffusion Watermarking for Causal Attribution using proactive schemes.
 - Developed ProMark, a causal attribution technique to credit training data concepts like objects, motifs, templates, artists, or styles in synthetic images.
 - Embedded imperceptible watermarks into training images, which diffusion models retain in generated images.
 - Successfully embedded up to 2¹⁶ unique watermarks, with each training image containing multiple watermarks.
 - ProMark significantly outperforms the prior passive correlation-based works.

| May. 2023- Nov. 2023 |

|May. 2023-Nov. 2023|

| May. 2025- Present|

gram.

| Jul. 2018- Dec. 2018 |

2. PrObeD: Proactive Object Detection Wrapper.

- Focused on enhancing 2D object detection, particularly for generic and camouflaged images.
- Addressed the suboptimal convergence of neural networks in object detection by proposing PrObeD, a proactive wrapper scheme.
- Developed an encoder-decoder architecture in PrObeD where the encoder generates image-dependent signals (templates) and the decoder recovers these templates from encrypted images.
- Demonstrated that learning optimum templates improves object detection performance.
- Achieved improved detection results on MS-COCO, CAMO, COD10K, and NC4K datasets.

3. Image manipulation Localization using proactive schemes.

- A novel proactive scheme for image manipulation localization, MaLP, applicable to both face and generic images is proposed.
- MaLP has a two-branch architecture to use both local and global features to learn templates in an unsupervised manner.
- MaLP can be used as a plug-and-play discriminator module to fine-tune GMs to improve the quality of the generated images.
- MaLP outperforms State-of-The-Art (SoTA) methods in manipulation localization and detection.

Proactive scheme for image manipulation detection by adding learnable templates 4.

- A novel proactive scheme is proposed which encrypts a real image by adding a template from a learnable template set.
- The added template is later recovered to perform image manipulation detection.
- The template set is learned using defined constraints which incorporate properties including small magnitude, more highfrequency content, orthogonality, and classification ability.
- Near-perfect average precision is obtained for unseen Generative Models (GMs) compared to prior works.
- The proposed framework is more generalizable to different GMs, showing an improvement of 10% average precision averaged across 12 GMs compared to prior works.

Model Parsing: Reverse engineering of hyperparameters of generative models 5.

- A novel problem of Model Parsing is defined to develop a framework for predicting the network architecture and loss functions given a generated image.
- We estimate the mean and deviation for each GM using two different parsers: cluster parser and instance parser which are then combined as the final predictions.
- A network architecture super-set with 15 features and a loss function type super-set with 10 features were selected to represent every GM.
- 1000 images each for 116 generative models were collected to create a new dataset, and the experiments were conducted in the leave-out setting.
- The method generalizes well to tasks of deepfake detection on the Celeb-DF benchmark and image attribution.

Deepfake video detection model 6.

- [Feb. 2020-Apr. 2020] Implemented a ML model consisting of Convolution neural networks (CNN) followed by a recurrent neural network (RNN) for deepfake detection.
- The CNN-RNN model would be able to detect whether a video is fake or real.
- The frames were extracted using the MTCNN model, which was then passed into the CNN-RNN model, trained on the Face-Forensics++ (FF++) dataset, and tested on the FF++ and Celeb-DF datasets.
- The model achieves 98.2% AUC on the FF++ dataset and 68.1% AUC on the Celeb-DF dataset. .

TECHNICAL PROFICIENCY

Tools, Simulation, and Software Platforms

TensorFlow, PyTorch, Pytorch Lightning, Keras, NumPy, Scikit-learn, Jupyter, OpenCV, CUDA, MATLAB and Simulink, GCS, Amazon Web Services (AWS), LabVIEW, Linux, CST Microwave studio, Cadence virtuoso, Microsoft-Visual Studio, Excel, Word and PowerPoint, OrCAD PSpice, Labcentre Proteus, Eagle- PCB Design and Schematic Software, Xilinx Vivado Suite and SDK, FluidSim

Languages / Scripts

Python, MATLAB, R, SOL, Perl, C, C++, Cascading Style Sheets (CSS), JavaScript, HTML, Verilog, VHDL, x86 Assembly Language, Arduino Programming

TALKS GIVEN

- 1. In-person talk given at Scale-AI headquarters in San Francisco. The talk was focused on our work on reverse engineering of generative models. (Recording available on website)
- 2. Virtual talk given at Scale-AI. The talk was focused on our work on proactive image manipulation detection. (Recording available on website)

RELEVANT COURSES PURSUED

- Computer Vision: Detectors and Descriptors, Optical Flow, Image segmentation, Tracking and object detection, Epipolar geometry.
- Machine learning: Regression, Classification, Dimensionality reduction, Sparse learning, Ensemble methods, multi-task learning
- Pattern recognition and analysis: Bayesian classification, Estimating gaussian MLE parameters, non-parametric density estimation.
- Deep Learning: Deep Neural Networks, Convolution Neural Networks, Recurrent Neural Networks, Sequence Models.
- Deep Learning specialization- deepleraning ai by Andrew Ng (Coursera).

[May. 2022-Nov. 2022]

[May. 2021-Apr. 2022]

|Jul. 2020-Apr. 2022|