
Reverse Engineering of Deceptions
on Machine- and Human-Centric Attacks

Suggested Citation: Yuguang Yao, Guo Xiao, Vishal Asnani, Yifan Gong, Jiancheng Liu,
Xue Lin, Xiaoming Liu and Sijia Liu (2018), “Reverse Engineering of Deceptions”, : Vol.
xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

Yuguang Yao
Michigan State University

yaoyugua@msu.edu

Xiao Guo
Michigan State University

guoxia11@msu.edu

Vishal Asnani
Michigan State University

asnanivi@msu.edu

Yifan Gong
Northeastern University

gong.yifa@northeastern.edu

Jiancheng Liu
Michigan State University

liujia45@msu.edu

Xue Lin
Northeastern University

xue.lin@northeastern.edu

Xiaoming Liu
Michigan State University

liuxm@msu.edu

Sijia Liu
Michigan State University

liusiji5@msu.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft

Contents

1 Introduction 2

2 Reverse Engineering of Adversarial Examples 6
2.1 Background and RED Formulation 7
2.2 Evaluation Metrics and Denoising-Only Baseline 9
2.3 Proposed Solution: Class-Discriminative Denoising for RED 12
2.4 Experiments . 14
2.5 Conclusion . 21

3 Model Parsing via Adversarial Examples 22
3.1 Background and Problem Setup 23
3.2 Proposal: Multi-Task Classification of Model Attributes . . 27
3.3 Experiments . 31
3.4 Conclusion . 38

4 Reverse Engineering of Generated Images 40
4.1 Motivation and Background 40
4.2 Problem Statement . 41
4.3 Proposed Method 1: Two-stage Model Parsing Network . . 42
4.4 Proposed Method 2: Learnable Graph Pooling Network . . 53
4.5 Conclusion . 64

5 Manipulation Localization of Generated Images 65
5.1 Motivation and Background 65
5.2 Problem Statement . 66
5.3 Passive Scheme Manipulation Localization 67
5.4 Proactive Scheme Manipulation Localization 75
5.5 Conclusion . 83

6 Conclusion and Discussion 84

References 86

Reverse Engineering of Deceptions
Yuguang Yao1, Guo Xiao2, Vishal Asnani3, Yifan Gong4,
Jiancheng Liu5, Xue Lin6, Xiaoming Liu7 and Sijia Liu8

1Michigan State University; yaoyugua@msu.edu
2Michigan State University; guoxia11@msu.edu
3Michigan State University; asnanivi@msu.edu
4Northeastern University; gong.yifa@northeastern.edu
5Michigan State University; liujia45@msu.edu
6Northeastern University; xue.lin@msu.edu
7Michigan State University; liuxm@msu.edu
8Michigan State University; liusiji5@msu.edu

ABSTRACT
This work presents a comprehensive exploration of Reverse
Engineering of Deceptions (RED) in the field of adversarial
machine learning. It delves into the intricacies of machine-
and human-centric attacks, providing a holistic understand-
ing of how adversarial strategies can be reverse-engineered to
safeguard AI systems. For machine-centric attacks, we cover
reverse engineering methods for pixel-level perturbations,
adversarial saliency maps, and victim model information
in adversarial examples. In the realm of human-centric at-
tacks, the focus shifts to generative model information infer-
ence and manipulation localization from generated images.
Through this work, we offer a forward-looking perspective
on the challenges and opportunities associated with RED. In
addition, we provide foundational and practical insights in
the realms of AI security and trustworthy computer vision.

Yuguang Yao, Guo Xiao, Vishal Asnani, Yifan Gong, Jiancheng Liu, Xue Lin,
Xiaoming Liu and Sijia Liu (2018), “Reverse Engineering of Deceptions”, : Vol. xx,
No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.
©2024 A. Heezemans and M. Casey

1
Introduction

In the domain of trustworthy computer vision (CV) and adversarial
machine learning (ML), the emergence of Reverse Engineering of Decep-
tions (RED) marks a pivotal evolution. This article is poised to grant
readers a profound understanding of RED, a novel and dynamic field
at the intersection of AI security and CV (DARPA, 2021). The existing
body of research in the field has exhaustively explored machine-centric
deceptions, such as adversarial attacks aimed at misleading ML models
(Goodfellow et al., 2014b; Madry et al., 2017), and human-centric de-
ceptions, particularly the utilization of generative models to fool human
decision-making (Creswell et al., 2018; Dhariwal and Nichol, 2021). In
the above context, RED introduces an innovative adversarial learning
paradigm with the ambitious goal of deciphering and cataloging the
intricacies of attacks targeted at both machines and humans.

The concept of RED is not merely an academic exercise; it is a
crucial response to the increasing sophistication of adversarial tactics in
CV. This burgeoning field seeks to automate the process of recovering
and indexing attack ‘fingerprints’ embedded in adversarial instances.
The core question that RED endeavors to answer is: Given an attack,
whether machine-centric or human-centric, can we reverse-engineer

2

3

the adversary’s underlying knowledge and the specifics of their attack
toolchains? This question extends beyond the realm of traditional
adversarial detection and defense techniques, delving into the deeper
layers of adversary intentions, methodologies, and the nuances of model
generation.

RED for ‘machine-centric’ attacks. Recent years have witnessed a
rapid expansion in RED research. As for adversarial attacks designed to
fool discriminative models, i.e., machine-centric attacks, RED aims not
only to defend against these attacks but also to infer the adversary’s
knowledge, including their identity, objectives, and the details of the
attack perturbations. Recent works in this area, such as those by (Nichol-
son and Emanuele, 2023; Wang et al., 2023; Maini et al., 2021; Zhou and
Patel, 2022; Guo et al., 2023c; Moayeri and Feizi, 2021), have focused
on reverse-engineering the type of attack generation methods and the
associated hyperparameters, like perturbation radius and step number.
There is also a growing interest in estimating or attributing adversarial
perturbations used in constructing adversarial images (Gong et al., 2022;
Goebel et al., 2021; Souri et al., 2021; Thaker et al., 2022), an endeavor
closely related to adversarial purification techniques (Srinivasan et al.,
2021; Shi et al., 2021; Yoon et al., 2021; Nie et al., 2022) which aim to
mitigate the impact of such attacks on model predictions. We note that
RED is distinct from research focused on reverse engineering model
hyperparameters in a black-box setting (Oh et al., 2019; Wang and
Gong, 2018), which typically involves estimating model attributes from
the model’s prediction logits. By contrast, in the realm of RED against
adversarial attacks, the victim model attribute is unknown, and the
only available information is the dataset of attack instances.

RED for ‘human-centric’ attacks. Generative Models (GMs) nowa-
days generate visually compelling images. However, they also introduce
the risk of human-centric attacks, leading to the inadvertent spread of
misinformation and threats to the trustworthiness of social media. To
counteract these negative impacts, two recent research directions aim to
reverse engineering deception — model parsing of generative models and
manipulation localization. Firstly, model parsing (Asnani et al., 2023b;

4 Introduction

Guo et al., 2023a) involves extracting GM hyperparameters used in
creating falsified images. Unlike previous model parsing works (Tramèr
et al., 2016; Oh et al., 2019; Hua et al., 2018; Batina et al., 2019),
which often required additional prior knowledge to predict training
information or model hyperparameters, (Asnani et al., 2023b) employs
a clustering-based approach to estimate mean and standard deviation
across different GMs. In contrast, (Guo et al., 2023a) introduces a novel
framework based on Graph Convolution Networks to learn dependencies
among these 37 hyperparameters. Secondly, manipulation localization
is a well-established computer vision research topic that identifies tam-
pered regions to deduce crucial information about deception. Existing
work has predominantly focused on manipulation in either the image
editing (Wu et al., 2019; Hu et al., 2020; Zhou et al., 2018; Mayer
and Stamm, 2018; Chen et al., 2021; Wang et al., 2022; Zhou et al.,
2020) or digital domain (Dang et al., 2020; Zhao et al., 2021; Huang
et al., 2022). In contrast, we introduce two manipulation localization
algorithms (Asnani et al., 2023a; Guo et al., 2023b) in this work, which
are capable of handling both domains simultaneously.

Objective and impact of this tutorial. We aim to present an all-
encompassing exploration of RED, from its algorithmic underpinnings to
its burgeoning applications, complemented by practical implementations.
Delving into various formulations of RED, this article will unravel both
the challenges and opportunities inherent in this field. The significance
of RED becomes particularly salient in high-stakes applications, such
as biometrics, autonomous driving, and healthcare, where the defense
against and diagnosis of attacks are paramount. The implications of RED
could extend beyond the boundaries of academic research, impacting
the real-world deployment of machine intelligence.

Furthermore, the pressing need for security and trustworthiness
in future CV models underscores the importance of our work. As the
popularity of adversarial ML surges, it becomes increasingly crucial
to ensure that research progress aligns with the demand for robust
and reliable AI systems. By investigating how one can reverse-engineer
threat models from adversarial instances, such as adversarial examples
and images synthesized by generative models, our article offers new

5

perspectives and insights.

Organization. The remainder of this article is structured as follows:
Chapters 2 and 3 will offer insights into the RED in machine-centric
adversarial images and their potential implications for model parsing
of adversarial attacks (i.e., inferring details of a victim model used for
attack generation). Chapters 4 and 5 will delve into the RED in the
human-centric attack, focusing on two research topics: model parsing
of generative models and manipulation localization. Model parsing of
generative models involves predicting hyperparameters used in the gen-
erative model, given the generated image. In parallel, manipulation
localization predicts a segmented mask to identify the manipulated
region, and this segmented mask serves to reverse engineer crucial infor-
mation about the malicious manipulation method. Finally, in Chapter 6,
we will explore the broader impact of RED on other pertinent domains
and offer our concluding remarks.

2
Reverse Engineering of Adversarial Examples

Chapter overview. In this chapter, we will detail on the definition over
the reverse engineer of deceptions (RED) on machine-centric adversarial
attacks. Prior to introducing the concept of RED, we revisit the vulner-
ability of neural network-based image classifiers to adversarial examples,
i.e., images slightly altered by an adversary to deceive this classifier. The
field of adversarial ML has extensively studied generating and defending
against such adversarial attacks, yet the process of reverse-engineering
adversarial perturbations from these images remains largely uncharted
territory. This untapped area of research heralds the novel adversarial
learning paradigm, RED, which—if successful—promises the ability to
estimate and nullify adversarial perturbations, potentially restoring the
original, untainted images.

The pursuit of RED on adversarial attacks, however, is fraught with
challenges. Adversarial perturbations, often subtle and carefully crafted,
are notoriously difficult to discern and reverse using a straightforward
RED objective. For instance, a conventional image denoising approach
might focus excessively on minimizing reconstruction error, neglect-
ing the preservation of classification characteristics inherent to the
adversarial perturbations. To address these challenges, this chapter will

6

2.1. Background and RED Formulation 7

formalize the RED problem and elucidate a set of underlying principles
critical for designing an effective RED strategy. Our findings indicate
that ensuring prediction alignment and incorporating appropriate data
augmentation—specifically spatial transformations—are paramount for
a robust and generalizable RED method.

Building on these principles, we will introduce a novel framework
that synergizes class-discriminative denoising with RED, designated
as the Class-Discriminative Denoising based RED (CDD-RED). This
framework is rigorously tested across various evaluation metrics, includ-
ing pixel-level, prediction-level, and attribution-level alignments, and
against a multitude of attack generation methods, and even adaptive
attacks. Our experiments validate the effectiveness of CDD-RED, show-
casing its proficiency in tackling the multifaceted challenges posed by
adversarial examples.

2.1 Background and RED Formulation

This section commences by addressing the threat scenario at the core
of our focus: adversarial attacks on images. Subsequently, we outline
the problem of RED and elucidate the challenges it presents.

2.1.1 Threat Model

We focus on ℓp attacks, where the adversary’s goal is to generate im-
perceptible input perturbations to fool a well-trained image classifier.
Formally, let x denote a benign image, and δ be an additive perturba-
tion variable. Given a victim classifier f and a perturbation strength
tolerance ϵ (in terms of, e.g., ℓ∞-norm constraint ∥δ∥∞ ≤ ϵ), the desired
attack generation algorithm A then seeks the optimal δ subject to the
perturbation constraints. Such an attack generation process is denoted
by δ = A(x, f, ϵ), resulting in an adversarial example x′ = x + δ. Here
A can be fulfilled by different attack methods, e.g., FGSM (Goodfellow
et al., 2014b), CW (Carlini and Wagner, 2017), PGD (Madry et al.,
2017), and AutoAttack (Croce and Hein, 2020).

8 Reverse Engineering of Adversarial Examples

2.1.2 Problem Statement

Different from conventional defenses to detect or reject adversarial
instances (Pang et al., 2020; Liao et al., 2018; Shafahi et al., 2020; Niu
et al., 2020), RED aims to address the following question.

(Problem of RED for adversarial examples) With an adversarial
image as input, is it feasible to reconstruct the adversarial perturba-
tions δ, and deduce the adversary’s goals and understanding, e.g., the
true image class concealed by the adversary and the region of the
image most affected by adversarial tactics?

Formally, our goal is to reconstruct δ from a given adversarial
example x′, assuming prior knowledge of the victim model f or its
approximation f̂ , particularly when f is not directly accessible. The
RED operation is expressed as δ = R(x′, f̂), which also accommodates
the white-box scenario (f̂ = f) as a particular instance. Our approach
involves developing a parametric model Dθ (for instance, a denoising
neural network, which is our primary focus) as a proxy for R. This
model is trained on a dataset comprising pairs of adversarial and benign
examples, denoted as Ω = (x′,x). Utilizing Dθ, RED aims to yield
a benign example estimate xRED and an adversarial example
estimate x′

RED, as described in the following equation:

xRED = Dθ(x′), x′
RED = x′ − xRED︸ ︷︷ ︸

perturbation estimate

+x, (2.1)

where a perturbation estimate is given by subtracting the RED’s
output with its input, i.e., x′ − Dθ(x′).

We emphasize that RED introduces a novel defensive strategy aimed
at ‘analyzing’ the intricacies of the perturbation in an existing adversar-
ial example, utilizing a retrospective, forensic approach. This contrasts
with adversarial detection (AD). Fig.2.1 visually contrasts RED and
AD. While AD is also developed retrospectively, its objective is to as-
certain whether an input is an adversarial example for a target model,
relying on specific statistics related to model features or logits. Moreover,
AD could serve as a preliminary step in the RED process, where it iden-
tifies ‘detected’ adversarial examples for a more detailed RED analysis.

2.2. Evaluation Metrics and Denoising-Only Baseline 9

Figure 2.1: Overview of RED versus AD.

In our experiments, it will also be demonstrated that RED’s outputs can
inform the development of adversarial detection methods. Thus, RED
and AD function as synergistic components within a comprehensive
loop.

Research challenge. In this study, we define the RED model Dθ as a
denoising network. Nevertheless, devising an appropriate denoiser for
RED is a challenging task. Broadly speaking, there are two principal
challenges involved. Initially, in contrast to traditional image denoising
methods (Zhang et al., 2017), crafting a denoiser for RED requires
consideration of the impact from victim models and the data char-
acteristics of adversary-benign pairs. Additionally, simply minimizing
reconstruction error may not be effective, as the adversarial perturbation
is delicately engineered (Niu et al., 2020). Consequently, either under-
denoising or over-denoising can significantly undermine the effectiveness
of RED.

2.2 Evaluation Metrics and Denoising-Only Baseline

Given that RED diverges from current defensive methods, we establish
new performance metrics for RED, spanning from pixel-level reconstruc-
tion error to attribution-level identification of adversary saliency regions.
Following this, we utilize these newly developed performance metrics

10 Reverse Engineering of Adversarial Examples

to illustrate the limitations of a standard image denoiser in adequately
serving the needs of RED.

2.2.1 RED Evaluation Metrics

For a trained RED model Dθ, its effectiveness will be gauged using a
test dataset (x′,x) ∈ Dtest. In this context, x′ serves as the test input for
the RED model, while x is the associated ground-truth benign example
for reference. The benign example estimate xRED and the adversarial
example estimate x′

RED are derived as per (2.1). The evaluation of RED
encompasses several dimensions: ① pixel-level reconstruction error, ②

prediction-level inference alignment, and ③ attribution-level adversary
saliency assessment.
① Pixel-level: The reconstruction error is measured by d(x,xRED) =
E(x′,x)∈Dtest [∥xRED − x∥2].
② Prediction-level: This involves assessing the Prediction alignment
(PA) between the benign example and its estimate (xRED,x) and be-
tween the adversarial example and its estimate (x′

RED,x′), yielding

PAbenign = card({(xRED,x) |F (xRED) = F (x)})
card(Dtest)

(2.2)

PAadv = card({(x′
RED,x′) |F (x′

RED) = F (x′)})
card(Dtest)

(2.3)

where card(·) is the set cardinality function and F signifies the prediction
label from the victim model f .
③ Attribution-level: This evaluates Input attribution alignment
(IAA) for both the benign pair (xRED,x) and the adversarial pair
(x′

RED,x′). We apply GradCAM (Selvaraju et al., 2020) for attributing
class predictions back to input saliency regions. The choice of GradCAM
is inspired by (Boopathy et al., 2020) to identify a class-discriminative
localization map against adversaries. The underlying concept of IAA
is that even subtle adversarial alterations at the pixel level can cause
significant discrepancies in input attributions with respect to the au-
thentic label y and the adversary’s intended label y′ (Boopathy et al.,
2020; Xu et al., 2019). Hence, a precise RED model should nullify
adversarial attribution effects via xRED, and estimate the adversarial

2.2. Evaluation Metrics and Denoising-Only Baseline 11

intent by identifying the saliency region in x′
RED (refer to Fig. 2.1 for

an illustration).

2.2.2 Denoising-Only (DO) Baseline

We also demonstrate why a standard image denoiser, often considered
the pixel-level denoising, falls short in addressing the RED challenge.
This limitation prompts us to reassess the approach to denoising specif-
ically from the RED perspective. Initially, we develop the denoising
network by focusing on minimizing the reconstruction error:

minimize
θ

ℓdenoise(θ; Ω) := E(x′,x)∈Ω∥Dθ(x′) − x∥1, (2.4)

where a Mean Absolute Error (MAE)-type loss is used for denoising
(Liao et al., 2018), and Ω is the training dataset.

Input image DO Groundtruth

B
en

ig
n

ex
am

pl
e

x/
x R

E
D

A
dv

.
ex

am
pl

e
x′ /

x′ R
E

D

I(·, y) I(·, y′) I(·, y) I(·, y′)

Figure 2.2: IAA of DO compared with ground-truth.

We then assess the effectiveness of DO using the non-adversarial
prediction alignment metric PAbenign and IAA. Our findings show that
PAbenign for DO stands at 42.8%. Furthermore, Fig. 2.2 illustrates the
IAA results of DO in relation to a specific input example. It becomes
evident that DO falls short in accurately reconstructing the adversarial
saliency regions when compared to the actual adversarial perturbations.
This indicates that DO-driven RED is deficient in its reconstruction
capabilities at both the prediction and attribution levels. Additionally,
another basic strategy might involve applying an adversarial attack
back to x′, but this approach is dependent on extra assumptions and
may not effectively recapture the original perturbations.

12 Reverse Engineering of Adversarial Examples

2.3 Proposed Solution: Class-Discriminative Denoising for RED

In this section, we introduce a novel approach known as Class-Discriminative
Denoising based RED, abbreviated as CDD-RED, with an overview pro-
vided in Fig. 2.3. CDD-RED comprises two primary elements. Firstly,
we implement a PA regularization to ensure prediction-level consistency
for both the estimated benign example xRED and the adversarial exam-
ple x′

RED, in comparison to their actual counterparts x and x′. Secondly,
we introduce a data augmentation method aimed at enhancing the gen-
eralization capabilities of RED while maintaining its class-discriminative
proficiency.

Figure 2.3: CDD-RED overview.

2.3.1 Benign and Adversarial Prediction Alignment

To precisely deduce the adversarial perturbation from an adversarial
example, insights gained from the DO method highlight the importance
of maintaining the class-discriminative accuracy of RED estimates,
ensuring they match the original predictions as seen in xRED versus x,
and x′

RED versus x′. Motivated by this, the training goal for CDD-RED
should not only focus on reducing the reconstruction error as outlined
in (2.4) but also on enhancing PA, essentially replicating the class-
discriminative feature of the original data. To fulfill this objective,
we supplement the denoiser Dθ with a known classifier f̂ to generate

2.3. Proposed Solution: Class-Discriminative Denoising for RED 13

predictions for the estimated benign and adversarial examples (refer
to Fig. 2.3), that is, xRED and x′

RED as defined in (2.1). By comparing
f̂(xRED) with f̂(x), and f̂(x′

RED) with f̂(x′), we aim to bolster PA
by minimizing the prediction discrepancy between true and estimated
examples:

ℓPA(θ; Ω) = E(x′,x)∈Ω[ℓPA(θ; x′,x)], (2.5)
ℓPA(θ; x′,x) := CE(f̂(xRED), f̂(x))︸ ︷︷ ︸

PA for benign prediction

+ CE(f̂(x′
RED), f̂(x′))︸ ︷︷ ︸

PA for adversarial prediction

, (2.6)

with CE representing the cross-entropy loss. It is advantageous to
combine the denoising loss (2.4) with the PA regularization (2.6) to
boost the class-discriminative capabilities, resulting in ℓdenoise + λℓPA,
where λ > 0 is a tuning parameter. To tackle this, we plan to introduce
a data augmentation technique to augment the denoising efficiency in
addition to the benefits of the PA regularization.

2.3.2 Data Augmentation for RED

The decision to integrate data transformations into CDD-RED is based
on two considerations. Firstly, data transformation can direct the atten-
tion of RED towards the most significant attack indicators, as adversarial
examples often exhibit sensitivity to input modifications (Luo et al.,
2015; Athalye et al., 2018; Xie et al., 2019; Li et al., 2020b; Fan et al.,
2021). Secondly, identifying transformation-stable benign/adversarial
instances could improve the effectiveness of PA and IAA.

However, selecting the most suitable data augmentation techniques
is a complex task. For instance, pixel-altering transformations like Gaus-
sian blurring and colorization might impede the ability to reconstruct
the original adversary-benignity pair (x′,x). Consequently, our focus
shifts to spatial image transformations, such as rotation, translation,
cropping & padding, cutout, and CutMix (Yun et al., 2019), which
preserve the original perturbations in a linear manner. In Fig. 2.4,
we examine RED’s performance, in terms of pixel-level reconstruction
error and prediction-level alignment accuracy, across various spatial
transformations. Notably, CutMix and cropping & padding demonstrate
the ability to enhance both metrics, making them suitable augmenta-

14 Reverse Engineering of Adversarial Examples

tion choices for RED enhancement. Additionally, our empirical studies
suggest that a combination of these two transformations can lead to
further performance improvements.

16.0 16.5 17.0 17.5
d(x, xRED)

0.71

0.72

0.73

0.74

0.75

0.76

(P
A b

en
ig

n
+

PA
ad

v)/
2

Base
Crop&Pad
Cutmix
Cutout
Translate
Rotate

Figure 2.4: The influence of different data augmentations. ‘Base’ refers to the base
training without augmentation.

Denoting T as a set of transformations that includes cropping &
padding and CutMix operations, and incorporating the denoising loss
(2.4), PA regularization (2.6), and data transformations T , we thus
formulate the overall training objective for CDD-RED as follows:

min
θ

E(x′,x)∈Ω,t∼T ∥Dθ(t(x′)) − t(x)∥1︸ ︷︷ ︸
ℓdenoise (2.4) with data augmentations

+λE(x′,x)∈Ω,t∼Ť [ℓPA(θ; t(x′), t(x))]︸ ︷︷ ︸
ℓPA (2.6) with data augmentation via Ť

,

(2.7)

where Ť denotes a properly-selected subset of T , and λ > 0 is a
regularization parameter. In the PA regularizer (2.7), we need to avoid
the scenario of over-transformation where data augmentation alters
the classifier’s original decision. This suggests Ť = {t ∈ T | F̂ (t(x)) =
F̂ (x), F̂ (t(x′)) = F̂ (x′) }, where F̂ represents the prediction label of
the pre-trained classifier f̂ , i.e., F̂ (·) = argmax(f̂(·)).

2.4 Experiments

We demonstrate the effectiveness of our proposed method in 4 aspects:
a) reconstruction error of adversarial perturbation, i.e., d(x,xRED), b)

2.4. Experiments 15

class-discriminative ability of the benign and adversarial example esti-
mate, i.e., PAbenign and PAadv by victim models, c) adversary saliency
region recovery, i.e., attribution alignment, and d) RED evaluation over
unseen attack types and adaptive attacks.

Attack datasets. To train and test RED models, we generate adver-
sarial images on the ImageNet dataset (Deng et al., 2009). We con-
sider 3 attack methods including PGD (Madry et al., 2017), FGSM
(Goodfellow et al., 2014b), and CW attack (Carlini and Wagner, 2017),
applied to 5 models including pre-trained ResNet18 (Res18), ResNet50
(Res50) (He et al., 2016), VGG16, VGG19, and InceptionV3 (IncV3)
(Szegedy et al., 2015). Furthermore, to evaluate the RED performance
on unseen perturbation types during training, additional 2K adversarial
examples generated by AutoAttack (Croce and Hein, 2020) and 1K
adversarial examples generated by Feature Attack (Sabour et al.,
2015) are included as the unseen testing dataset. AutoAttack is applied
on VGG19, Res50 and two new victim models, i.e., Alexnet and
Robust ResNet50 (R-Res50), via fast adversarial training (Wong et al.,
2020) while Feature Attack is applied on VGG19 and Alexnet. The
rational behind considering Feature Attack is that feature adversary has
been recognized as an effective way to circumvent adversarial detection
(Tramer et al., 2020). Thus, it provides a supplement on detection-aware
attacks.

RED model training and evaluation. During the training of the RED
denoisers, VGG19 (Simonyan and Zisserman, 2015) is chosen as the
pretrained classifier f̂ for PA regularization. Although different victim
models were used for generating adversarial examples, we will show that
the inference guided by VGG19 is able to accurately estimate the true
image class and the intent of the adversary. In terms of the architecture
of Dθ, DnCNN (Zhang et al., 2017) is adopted. The RED problem is
solved using an Adam optimizer (Kingma and Ba, 2015) with the initial
learning rate of 10−4, which decays 10 times for every 140 training
epochs. In (2.7), the regularization parameter λ is set as 0.025. The
transformations for data augmentation include CutMix and cropping &
padding. The maximum number of training epochs is set as 300.

16 Reverse Engineering of Adversarial Examples

Baselines. We compare CDD-RED with two baseline approaches: a)
the conventional denoising-only (DO) approach with the objective func-
tion (2.4); b) The state-of-the-art Denoised Smoothing (DS) (Salman
et al., 2020) approach that considers both the reconstruction error and
the PA for benign examples in the objective function. Both methods
are tuned to their best configurations.

2.4.1 Experiment Results: Reconstruction Error and PA

Table 2.1 presents the comparison of CDD-RED with the baseline
denoising approaches in terms of d(x,xRED), d(f(x), f(xRED)),
d(f(x′), f(x′

RED)), PAbenign, and PAadv on the testing dataset. As we
can see, our approach (CDD-RED) improves the class-discriminative
ability from benign perspective by 42.91% and adversarial perspective
by 8.46% with a slightly larger reconstruction error compared with the
DO approach.

Table 2.1: The performance comparison among DO, DS and CDD-RED on the
testing dataset.

DO DS CDD-RED
d(x,xRED) 9.32 19.19 13.04

d(f(x), f(xRED)) 47.81 37.21 37.07
d(f(x′), f(x′

RED)) 115.09 150.02 78.21
PAbenign 42.80% 86.64% 85.71%
PAadv 71.97% 72.47% 80.43%

In contrast to DS, CDD-RED achieves similar PAbenign but im-
proved pixel-level denoising error and PAadv. Furthermore, CDD-RED
achieves the best logit-level reconstruction error for both f(xRED) and
f(x′

RED) among the three approaches. This implies that xRED rendered
by CDD-RED can achieve highly similar prediction to the true benign
example x, and the perturbation estimate x′ − xRED yields a similar
misclassification effect to the ground-truth perturbation.

2.4. Experiments 17

Input image DO DS CDD-RED (ours) Groundtruth

B
en

ig
n

ex
am

pl
e

x/
x R

E
D

A
dv

.
ex

am
pl

e
x′ /

x′ R
E

D

I(·, y) I(·, y′) I(·, y) I(·, y′) I(·, y) I(·, y′) I(·, y) I(·, y′)

Figure 2.5: Interpretation (I) of benign (x/xRED) and adversarial (x′/x′
RED) image

w.r.t. the true label y=‘ptarmigan’ and the adversary targeted label y′=‘shower
curtain’. We compare three methods of RED training, DO, DS, and CDD-RED as
our method, to the ground-truth interpretation. Given an RED method, the first
column is I(xRED, y) versus I(x′

RED, y), the second column is I(xRED, y′) versus
I(x′

RED, y′), and all maps under each RED method are normalized w.r.t. their largest
value. For the ground-truth, the first column is I(x, y) versus I(x′, y), the second
column is I(x, y′) versus I(x′, y′).

(a) Denoising Only (b) Denoised Smoothing (c) CDD-RED (ours)

Figure 2.6: IoU distributions of the attribution alignment by three RED methods.
Higher IoU is better. For each subfigure, the four IoU scores represent IoU(xRED, x, y),
IoU(xRED, x, y′), IoU(x′

RED, x′, y), and IoU(x′
RED, x′, y′).

2.4.2 Experiment Results: Attribution Alignment

Besides evaluating RED performance through pixel-level and prediction-
level alignments, we also explore attribution alignment. Fig. 2.5 displays
attribution maps created by GradCAM, considering I(x, y), I(x′, y),
I(x, y′), and I(x′, y′), where x′ is the modified version of x, and y′

represents the adversarial target label. The sequence from left to right
includes the attribution maps for DO, DS, CDD-RED (our approach),
and the ground-truth. Notably, CDD-RED demonstrates an attribution
alignment more closely resembling the ground-truth, particularly evident
in the comparison between I(xRED, y) and I(x, y).

At a broader dataset level, Fig. 2.6 presents the distribution of attri-

18 Reverse Engineering of Adversarial Examples

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation portion p

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f x

′ p re
d

Groundtruth
CDD-RED
DS
DO

(a) Accuracy of x′p
RED

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation portion p

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

of
 x

′ p re
d

Groundtruth
CDD-RED
DS
DO

(b) Success rate of x′p
RED

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation portion p

0

100

200

300

400

d(
f(x

′ p re
d)

,f
(x

))

Groundtruth
CDD-RED
DS
DO

(c) d(f(x′p
RED), f(x))

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation portion p

0

5

10

15

20

25

d(
x′ p re

d,
x)

Groundtruth
CDD-RED
DS
DO

(d) d(x′p
RED,x)

Figure 2.7: Reverse engineer partially-perturbed data under different interpolation
portion p.

bution IoU scores. In this comparison, it’s noticeable that CDD-RED’s
IoU distribution, relative to DO and DS, is more densely concentrated in
higher-value regions. This pattern suggests a closer alignment with the
adversary’s attribution map. This characteristic highlights a compelling
application of our proposed RED method: it can effectively recover the
adversary’s focal saliency regions, specifically the class-discriminative
image areas targeted by the adversary.

2.4.3 Experiment Results: RED Against Unforeseen Attack Types

Our experiments focused on recovering from unforeseen attack types
consist of two main components: a) the creation of partially perturbed
data using linear interpolation and b) introducing previously unseen
attack types such as AutoAttack, Feature Attack, and Adaptive Attack.

To generate partially perturbed data, we linearly added a fraction p
from the perturbation x′ − x to the original benign example x. This
process is represented as x′p = x + p(x′ − x). Subsequently, the inter-

2.4. Experiments 19

polated x′p samples were utilized as inputs for an RED model. Our
primary objective was to assess the effectiveness of the proposed RED
method in recovering from partial perturbations, even in cases where
the attacks were not entirely successful.

Fig. 2.7 (a) and (b) illustrate the alignment of predictions with
respect to y and y′ for the estimated adversarial examples x′p

RED =
x′p − Dθ(x′p) + x, generated by different RED models. Fig. 2.7 (c)
displays the logit distance between the predictions of partially perturbed
adversarial examples and the predictions of benign examples. In contrast,
Fig. 2.7 (d) demonstrates the pixel-wise distance between x′p

RED and the
benign examples.

A smaller discrepancy between the ground-truth curve (depicted
in red) and the curve representing the estimated adversarial examples
x′p

RED indicates superior performance. Fig. 2.7 (a) and (b) reveal that
CDD-RED provides the closest approximation to the ground truth in
terms of prediction accuracy and attack success rate. This is further
confirmed by the distance in prediction logits displayed in Fig. 2.7 (c).
Fig. 2.7 (d) indicates that DS tends to overestimate the additive pertur-
bation, while CDD-RED maintains the perturbation estimation closest
to the ground truth. Although DO performs better than CDD-RED
when p < 40%, it falls short in providing a more precise adversarial
perturbation according to other performance metrics. For instance, in
Fig. 2.7 (b) at p = 20%, the x′p

RED generated by DO achieves a lower
successful attack rate compared to CDD-RED and the ground truth.

Furthermore, regarding benign examples with p = 0% perturbations,
it’s worth noting that the RED denoiser, despite not being trained on
benign example pairs (x, x), maintains its ability to effectively recover
benign examples. CDD-RED demonstrates proficiency in handling sce-
narios where both adversarial and benign examples are present. This
means that even if a benign example, which is misclassified as adversar-
ial, is erroneously introduced into the RED framework, our method can
successfully reconstruct the original perturbation, closely approximating
the ground truth.

Table 2.2 presents an overview of RED’s performance when dealing
with previously unseen attack types, including AutoAttack, Feature
Attack, and Adaptive Attack. For both AutoAttack and Feature Attack,

20 Reverse Engineering of Adversarial Examples

Table 2.2: The d(x, xRED), PAbenign, and PAadv performance of the denoisers on
the unforeseen perturbation type AutoAttack, Feature Attack, and Adaptive Attack.

DO DS CDD-RED

d(x,xRED)
AutoAttack 6.41 16.64 8.81

Feature Attack 5.51 16.14 7.99
Adaptive Attack 9.76 16.21 12.24

PAbenign

AutoAttack 84.69% 92.64% 94.58%
Feature Attack 82.90% 90.75% 93.25%

Adaptive Attack 33.20% 27.27% 36.29%

PAadv

AutoAttack 85.53% 83.30% 88.39%
Feature Attack 26.97% 35.84% 63.48%

Adaptive Attack 51.21% 55.41% 57.11%

CDD-RED exhibits superior performance compared to DO and DS,
as measured by PA from both benign and adversarial perspectives.
Notably, CDD-RED significantly enhances PAadv for Feature Attack,
surpassing DO and DS by 36.51% and 27.64%, respectively.

Regarding the adaptive attack (Tramer et al., 2020), we assume that
the attacker possesses knowledge of the RED model, specifically Dθ.
In this scenario, the attacker can employ the PGD attack method to
create successful prediction-evasion attacks, even after undergoing the
RED operation. To generate such attacks, we employ PGD methods
within the ℓ∞-ball, with a perturbation radius of ϵ = 20/255. Table
2.2 reveals that the Adaptive Attack is considerably more potent than
Feature Attack and AutoAttack, resulting in larger reconstruction errors
and lower PA. However, CDD-RED still outperforms DO and DS in
terms of PAbenign and PAadv. Moreover, compared to DS, it achieves a
more favorable balance between denoising error d(x,xRED) and other
performance metrics.

In summary, CDD-RED demonstrates the ability to achieve high
PA even when confronted with previously unseen attacks, showcasing its
capacity to generalize and estimate not only new adversarial examples
generated from the same attack method but also novel attack types.

2.5. Conclusion 21

2.5 Conclusion

Studying RED problem of adversarial examples, we aim to recover vital
attack components such as adversarial perturbations and adversary
saliency regions. It’s worth noting that RED has not received thorough
exploration in prior research efforts. Our proposal takes significant
strides in not only formalizing the RED problem but also crafting a
comprehensive pipeline that encompasses not only a solution but also
an exhaustive set of evaluation metrics.

We have also identified a series of RED principles that span from the
fine-grained pixel level to the more abstract attribution level, all essential
in the endeavor to reverse-engineer adversarial attacks. Our approach
centers around an effective denoiser-assisted RED technique, which
seamlessly integrates class-discrimination and data augmentation into an
image denoising network. Through a multitude of rigorous experiments,
our approach demonstrates its superiority over existing baseline methods.
It showcases a remarkable ability to generalize effectively, even when
confronted with previously unseen attack types.

In next chapter, we will extend our RED focus from machine-centric
adversarial instances themselves to the victim model they aim at. We
will dive into the feasibility of the model parsing via these adversarial
examples.

3
Model Parsing via Adversarial Examples

Chapter overview. In this chapter, we will delve deeper into the
reverse-engineering potential of machine-centric attacks, this time ex-
amining it from a ‘model parsing’ standpoint. Our objective is to
demonstrate that adversarial perturbations can do more than just being
estimated and attributed, as discussed in Chapter 2. They can also
inadvertently divulge information about the victim model, a process
we refer to as ‘model parsing.’ This entails the inference of the victim
model’s parameters that the adversary employed in the attack.

Adversarial attack methods stand out for their ability to craft subtle
image perturbations that lead even the most advanced deep neural
networks (DNNs) astray. Yet, the underlying ‘arcana’—the intricate
DNN-related details concealed within these attacks—has largely eluded
examination. This uncharted inquiry delves into whether we can decode
data-agnostic information about the ‘victim model’ (VM)—the particu-
lar ML model or DNN targeted by these attacks—from the adversarial
examples themselves. This process, termed ‘model parsing of adversar-
ial attacks’, aims to unravel the VM’s hidden characteristics such as
architecture type, kernel size, activation function, and weight sparsity,
from the adversarial instances crafted to deceive it. In the upcoming

22

3.1. Background and Problem Setup 23

chapter, we will also investigate the challenge of model parsing in the
context of human-centric attacks produced by generative models.

In this chapter, we employ supervised learning to attribute the
correct classes of VM’s model attributes to a given adversarial instance.
We assemble a diverse dataset comprising adversarial attacks from seven
distinct types, generated by 135 different victim models with varied
configurations. Through this dataset, we explore the ability of a model
parsing network (MPN) to accurately deduce VM attributes from unseen
adversarial attacks. Extensive experimentation underpins our inquiry
into the practicality of VM parsing from adversarial attacks, along with
the exploration of factors that impact parsing performance, such as
the challenges of generalization in out-of-distribution evaluations. We
extend our analysis to transfer attacks, aiming to uncover the source
VM attributes and illuminate a potential link between model parsing
capability and the transferability of adversarial attacks. Through this
chapter, we also intend to highlight the nuanced interplay between
attack generation and its victim model characteristics.

3.1 Background and Problem Setup

In this section, we will detail the preliminaries and problem setups
of model parsing for adversarial examples. We will first introduce the
adversarial attacks we study on and how they are generated. Then, we
will introduce what is model parsing and illustrate the problem setup.

3.1.1 Adversarial Attack Generation and Victim Models

We first detail the adversarial attack types that we cover in this chapter
and show their dependence on VM (victim model), i.e., the ML model
from which adversarial examples are generated. Meanwhile, we consider
different types of model attributes that involve in model parsing.

We focus on ℓp attacks, where the adversary aims to generate im-
perceptible input perturbations to fool an image classifier (Goodfellow
et al., 2014b). Let x and θ denote a benign image and the parameters of
VM. The adversarial attack (a.k.a, adversarial example) is defined via
the linear perturbation model x′ = x + δ, where δ = A(x,θ, ϵ) denotes

24 Model Parsing via Adversarial Examples

adversarial perturbations, and A refers to an attack generation
method relying on x, θ, and the attack strength ϵ (i.e., the perturbation
radius of ℓp attacks).

In this study, we examine seven distinct adversarial attack methods,
each varying in their reliance on the victim model’s parameters (θ). This
includes four input gradient-based white-box attacks that have complete
access to θ, namely FGSM (Goodfellow et al., 2014b), PGD (Madry et al.,
2017), CW (Carlini and Wagner, 2017), and AutoAttack (or AA) (Croce
and Hein, 2020). Additionally, we consider three query-based black-box
attacks, which are ZO-signSGD (Liu et al., 2019b), NES (Ilyas et al.,
2018), and SquareAttack (or Square) (Andriushchenko et al., 2020),
that do not require direct access to θ.
✦ FGSM (fast gradient sign method) (Goodfellow et al., 2014b): This
attack method is given by δ = x − ϵ× sign(∇xℓatk(x;θ)), where sign(·)
is the entry-wise sign operation, and ∇xℓatk is the input gradient of an
attack loss ℓatk(x;θ) evaluated at x under θ.
✦ PGD (projected gradient descent) (Madry et al., 2017): This extends
FGSM via an iterative algorithm. Formally, the K-step PGD ℓ∞ attack is
given by δ = δK , where δk = P∥δ∥∞≤ϵ(δk−1 − α × sign(∇xℓatk(x;θ)))
for k = 1, . . . ,K, P∥δ∥∞≤ϵ is the projection operation onto the ℓ∞-norm
constraint ∥δ∥∞ ≤ ϵ, and α is the attack step size. By replacing the ℓ∞
norm with the ℓ2 norm, we similarly obtain the PGD ℓ2 attack (Madry
et al., 2017).
✦ CW (Carlini-Wager) attack (Carlini and Wagner, 2017): Similar to PGD,
CW calls iterative optimization for attack generation. Yet, CW formulates
attack generation as an ℓp-norm regularized optimization problem, with
the regularization parameter c = 1 by default. For example, the choice
of c = 1 in CW ℓ2 attack could lead to a variety of perturbation strengths
with the average value around ϵ = 0.33 on the CIFAR-10 dataset.
Moreover, CW adopts a hinge loss to ensure the misclassification margin.
We will focus on CW ℓ2 attack.
✦ AutoAttack (or AA) (Croce and Hein, 2020): This is an ensemble
attack that uses AutoPGD, an adaptive version of PGD, as the primary
means of attack. The loss of AutoPGD is given by the difference of logits
ratio (DLR) rather than CE or CW loss.
✦ ZO-signSGD (Liu et al., 2019b) and NES (Ilyas et al., 2018): These

3.1. Background and Problem Setup 25

are zeroth-order optimization (ZOO)-based black-box attacks. Unlike
the white-box attacks that rely on gradient-based methods, these black-
box attacks interact with the victim model (θ) solely by submitting
inputs and obtaining the corresponding predictions. ZOO exploits these
input-output pairs to approximate input gradients for crafting adver-
sarial perturbations. Yet, ZO-signSGD and NES call different gradient
estimators in ZOO (Liu et al., 2020).

Table 3.1: Summary of adversarial attack types focused in this work. Here GD refers
to gradient descent, and WB and BB refer to white-box and black-box dependence
on the victim model, respectively.

Attacks Generation method Loss ℓp norm Strength ϵ Dependence on θ

FGSM one-step GD CE ℓ∞ {4, 8, 12, 16}/255 WB, gradient-based

PGD multi-step GD CE ℓ∞ {4, 8, 12, 16}/255 WB, gradient-based
ℓ2 0.25, 0.5, 0.75, 1

CW multi-step GD CW ℓ2
soft regularization
c ∈ {0.1, 1, 10} WB, gradient-based

AutoAttack attack ensemble CE / ℓ∞ {4, 8, 12, 16}/255 WB, gradient-based +
or AA DLR ℓ2 0.25, 0.5, 0.75, 1 BB, query-based

SquareAttack random search CE ℓ∞ {4, 8, 12, 16}/255 BB, query-basedor Square ℓ2 0.25, 0.5, 0.75, 1

NES ZOO CE ℓ∞ {4, 8, 12, 16}/255 BB, query-based

ZO-signSGD ZOO CE ℓ∞ {4, 8, 12, 16}/255 BB, query-based

While there are various forms of ℓp attacks available, we have chosen
to focus on the adversarial attacks listed in Table 3.1. This selection
is based on their diversity, including different optimization approaches,
attack losses, ℓp norms, and levels of dependency on the VM (θ).

3.1.2 Problem Setup

It’s evident from the aforementioned attach generation methods that
adversarial attacks reveal information about the VM (θ), although the
extent of their dependence varies. This observation raises an intriguing
question: Can we deduce the attributes of θ from these attack instances,
such as adversarial perturbations or the perturbed images? The specific
model attributes we focus on include the types of model architectures
and more detailed aspects like the type of activation function. We
refer to this challenge as model parsing for adversarial attacks, as

26 Model Parsing via Adversarial Examples

elaborated below:

(Problem statement) Is it possible to infer victim model informa-
tion from adversarial attacks? And what factors will influence such
model parsing effectiveness?

To the best of our knowledge, determining the feasibility of model
parsing from instances of adversarial attacks remains an unresolved
issue. The challenges lie in two key areas. Firstly, from the model per-
spective, VM has an indirect connection with adversarial attacks, such
as through local gradient information or model queries. Consequently,
it’s unclear to what extent VM information is imprinted in adversarial
attacks and how this affects the potential for successful model parsing.
Secondly, from the attack perspective, the variety of adversarial
attacks (referenced in Table 3.1) complicates the development of a
universal solution for model parsing. Motivated by these considerations,
we aim to take an initial substantial step towards exploring the feasi-
bility of model parsing from adversarial attacks and identifying which
factors might impact model parsing efficacy. Insights gained from this
endeavor could deepen our understanding of the threat model we face
and potentially lead to innovative approaches in crafting adversarial
defenses and robust models.

Model attributes and setup. We define VMs in adversarial attacks as
convolutional neural network (CNN)-based image classifiers. Specifically,
we consider five CNN architecture types (ATs): ResNet9, ResNet18,
ResNet20, VGG11, and VGG13. For a given AT, CNN models are
further configured by varying the kernel size (KS), activation function
(AF), and weight sparsity (WS). Hence, a specific VM (θ) is determined by
a valued quadruple (AT, KS, AF, WS). While additional attributes could
be explored, we prioritize KS and AF as they are fundamental to CNN
construction. Furthermore, we include WS as it pertains to sparse models,
typically achieved through pruning (i.e., removing redundant model
weights) (Han et al., 2015; Frankle and Carbin, 2018). Comprehensive
examination of all possible model attributes is reserved for future
research. Table 3.2 presents a summary of the focused model attributes
and their respective values, used to define VM instances. With a specified

3.2. Proposal: Multi-Task Classification of Model Attributes 27

VM, we generate adversarial attacks following the methods listed in
Table 3.1. Unless stated otherwise, our empirical studies primarily utilize
CIFAR-10, but additional experiments on other datasets.

Table 3.2: Summary of model attributes of interest. Each attribute value corresponds
to an attribute class in model parsing.

Model attributes Code Classes per attribute

Architecture type AT
ResNet9, ResNet18

ResNet20, VGG11, VGG13

Kernel size KS 3, 5, 7

Activation function AF ReLU, tanh, ELU

Weight sparsity WS 0%, 37.5%, 62.5%

3.2 Proposal: Multi-Task Classification of Model Attributes

In this section, we solve the model parsing problem as a multi-task
supervised classification task applied over the dataset of adversarial
attacks. We will show that the well-trained model parsing network could
exhibit the great ability of generalization on test-time adversarial data.
We will also show that data-model factors that may influence such
generalization.

3.2.1 Model Parsing Network and Training

We approach the model parsing problem through the lens of a supervised
attribute recognition task. In this context, we construct a parametric
model, named the model parsing network (MPN). This network is
designed to accept adversarial attacks as input and to predict the values
of the model attributes (interpreted as ‘classes’ in Table 3.2). While
the concept of supervised learning is straightforward, the development
of MPN involves intricate considerations, particularly in terms of the
input data type, the backbone network architecture, and the evaluation
metrics to be employed.

Initially, we establish a dataset for model parsing by aggregat-
ing instances of adversarial attacks targeted at various victim models.

28 Model Parsing via Adversarial Examples

Considering that adversarial attacks are designed to bypass model
predictions after training, we utilize the test set from a standard im-
age dataset (for instance, CIFAR-10) to create this adversarial dataset,
adopting an 80/20 split for both training and assessing (MPN). As
delineated in Sec. 3.1, the MPN training dataset is represented as
Dtr = {(z(A,x,θ), y(θ)) | x ∈ Itr,θ ∈ Θ}, where z indicates the feature
of attack data (like adversarial perturbations δ or the adversarial ex-
ample x′) dependent on the chosen attack method A, the initial image
x, and the VM (victim model) θ. The term y(θ) represents the actual
model attribute label linked to θ. Differentiating from MPN’s test data,
Itr is defined as the set of original images for training MPN, and Θ
is the set of model architectures employed for creating attack data
in Dtr. For ease of presentation, the training set of MPN is stated as
Dtr = {(z, y)}, omitting the dependence on other factors.

We now detail the design of MPN, which is parameterized by ϕ.
Our aim is to keep the architecture of MPN straightforward and dis-
tinct from the VM θ. This approach is twofold: Firstly, our goal is
to explore the practicality of model parsing from adversarial attacks
while maintaining a basic structure for the attribution network (ϕ).
Secondly, we aim to minimize the ‘model attribute bias’ in ϕ when
deducing attributes of VM from adversarial attacks. Guided by these
considerations, MPN is defined using two uncomplicated networks: (1)
a Multilayer Perceptron (MLP) with two hidden layers, each comprising
128 units (totaling 0.41M parameters) (LeCun et al., 2015), and (2) a
basic 4-layer CNN (ConvNet-4) with 64 output channels per layer, suc-
ceeded by a single fully-connected layer with 128 hidden units and the
final attribution prediction head (totaling 0.15M parameters) (Vinyals
et al., 2016). As will be evident later, ConvNet-4 generally surpasses
MLP in model parsing accuracy, leading to the selection of ConvNet-4
as the default MPN model.

Given the datamodel setup, we next tackle the recognition problem of
VM’s attributes (AT, KS, AF, WS) via a multi-head multi-class classifier.
We dissect MPN into two parts ϕ = [ϕrep,ϕatr], where ϕrep is for
data representation acquisition, and ϕattr corresponds to the attribute-
specific prediction head (i.e., the last fully-connected layer in our design).

3.2. Proposal: Multi-Task Classification of Model Attributes 29

ResNet9
ResNet18
ResNet20
VGG11
VGG13

AT

KS3
5
7

ReLU
tanh
ELU

AF
0%
37.5%
62.5%

WS

or

...

MPN

PEN:In
pu

t d
at

a

Our Proposal of Model ParsingAttackers

Figure 3.1: The schematic overview of our proposal. Input data (marked in red) is
directly generated by the attackers in the wild while our proposal (marked in green)
focuses on parsing the victim model attributes from adversarial input data. Here
PEN (perturbation estimation network) will be introduced later as a pre-processing
step to transform adversarial examples into perturbation-alike input data.

Eventually, four prediction heads {ϕ(i)
atr}4

i=1 will share ϕrep for model
attribute recognition; see Fig. 3.1 for a schematic overview of our
proposal. The MPN training problem is then cast as

minimize
ϕrep,{ϕ(i)

atr}4
i=1

E(z,y)∈Dtr

4∑
i=1

[ℓCE(h(z;ϕrep,ϕ
(i)
atr), yi)], (3.1)

where h(z;ϕrep,ϕ
(i)
atr) denotes the MPN prediction at input example

z using the predictive model consisting of ϕrep and ϕ(i)
atr for the i-th

attribute classification, yi is the ground-truth label of the i-th attribute
associated with the input data z, and ℓCE is the cross-entropy (CE) loss
characterizing the error between the prediction and the true label.

3.2.2 Evaluation of Model Parsing via Adversarial Examples

Similar to training, we denote by Dtest = {(z(A,x,θ), y(θ)) | x ∈
Itest,θ ∈ Θ} the test attack set for evaluating the performance of
MPN. Here the set of benign images Itest is different from Itr, thus
adversarial attacks in Dtest are new to Dtr. To mimic the standard
evaluation pipeline of supervised learning, we propose the following
evaluation metrics.

(1) In-distribution generalization: The MPN testing dataset Dtest
follows the attack methods (A) and the VM specifications (Θ) same as

30 Model Parsing via Adversarial Examples

Dtr but corresponding to different original benign images (i.e., Itest ̸=
Itr). The purpose of such an in-distribution evaluation is to examine
if the trained MPN can infer model attributes encoded in new attack
data given already-seen attack methods.

(2) Out-of-distribution (OOD) generalization: In addition to new
test-time images, there exist attack/model distribution shifts in Dtest
due to using new attack methods or model architectures, leading to
unseen attack methods (A) and victim models (Θ) different from the
settings in Dtr.

In the rest of the chapter, both in-distribution and OOD gener-
alization capabilities will be assessed. Unless specified otherwise, the
generalization of MPN stands for the in-distribution generalization.

3.2.3 Input Data Format for MPN

As revisited from Sec. 3.1, an adversarial example, formulated as x′ = x+
δ, is associated with θ via δ. Therefore, it might be more advantageous
for MPN to utilize adversarial perturbations (δ) as the attack data
feature (z) instead of the less direct adversarial example x′. Fig. 3.2
provides empirical evidence supporting this notion by evaluating the
generalization ability of MPN when trained on adversarial perturbations
versus adversarial examples, considering the two model configurations of
MPN, namely, MLP and ConvNet-4. The efficacy of MPN, trained and
evaluated on various attack types, is showcased. The results indicate
that employing adversarial perturbations (δ) consistently enhances
the accuracy in classifying VM attributes at test time, relative to
using adversarial examples (x′). Furthermore, ConvNet-4 significantly
surpasses MLP in performance.

Although Fig. 3.2 shows the promise of the generalization ability of
MPN when trained and tested on adversarial perturbations, it may raise
another practical question of how to obtain adversarial perturbations
from adversarial examples if the latter is the only attack source accessible
to MPN. To overcome this difficulty, we propose a perturbation estimator
network (PEN) that can be jointly learned with MPN. Once PEN is
prepended to the MPN model, the resulting end-to-end pipeline can
achieve model parsing using adversarial examples as inputs (see Fig. 3.1).

3.3. Experiments 31

20 40 60 80 100

FG
SM

PGD

PGD 2CW

AA

AA

2

Square

Square 2 NES

ZO
-si

gn
SG

D
FG

SM

PGD

PGD 2CW

AA

AA

2

Square

Square 2 NES

ZO
-si

gn
SG

D

MLP,
ConvNet-4,

MLP, x′
ConvNet-4, x′

Figure 3.2: The in-distribution generalization of MPN using different formats of
input data (adversarial perturbations δ vs. adversarial examples x′) and parsing
networks (ConvNet-4 vs. MLP). The generalization performance is measured by the av-
eraged testing accuracy of attribute-specific classifiers. The attack data are generated
from 10 attack methods given in Table 3.1, with ℓ∞ attack strength ϵ = 8/255 and
ℓ2 attack strength ϵ = 0.5 on CIFAR-10. The VM architecture is fixed to ResNet-9,
and VM instances are generated by varying other model attributes in Table 3.2.

We use a denoising network, DnCNN (Zhang et al., 2017), to model PEN
with parameters ψ. PEN obtains perturbation estimates by minimizing
the denoising objective function using the true adversarial perturbations
as supervision. Extended from (3.1), we then have

minimize
ψ,ϕrep,{ϕ(i)

atr}4
i=1

βE(x,x′)∈Dtr [ℓMAE(gψ(x′),x′ − x)]

+E(x′,y)∈Dtr

∑4
i=1[ℓCE(h(gψ(x′);ϕrep,ϕ

(i)
atr), yi)],

(3.2)

where gψ(x′) is the output of PEN given x′ as the input, ℓMAE is the
mean-absolute-error (MAE) loss characterizing the perturbation esti-
mation error, and β > 0 is a regularization parameter. Compared with
(3.1), MPN takes the perturbation estimate gψ(x′) for VM attribute
classification.

3.3 Experiments

In this section, we first introduce our experiment setup and implemen-
tation. We then show the effectiveness of our proposed model parsing

32 Model Parsing via Adversarial Examples

method through three different aspects: 1) the in-distribution generaliza-
tion; 2) the out-of-distribution (OOD) generalization; 3) the evaluation
of transfer attacks.

3.3.1 Experiment Setup and Implementation

We utilize image classification datasets such as CIFAR-10, CIFAR-100,
and Tiny-ImageNet for the development of victim models, which serve
as the basis for generating various attacks. These VM instances are
subsequently employed to construct datasets for MPN (model parsing
network), as elaborated in Sec. 3.2. Both the types of attacks and
the configurations of the victim models are comprehensively listed in
Table 3.1 and Table 3.2. Consequently, we have compiled a dataset
encompassing adversarial attacks of 7 distinct types, derived from 135
different VMs. These VMs are diversified by 5 architectural types, 3
kernel size configurations, 3 activation function variations, and 3 levels
of weight sparsity.

To solve problem (3.1), we train the MPN using the SGD (stochastic
gradient descent) optimizer with cosine annealing learning rate schedule
and an initial learning rate of 0.1. The training epoch number and the
batch sizes are given by 100 and 256, respectively. To solve problem
(3.2), we first train MPN according to (3.1), and then fine-tune a pre-
trained DnCNN model (Gong et al., 2022) (taking only the denoising
objective into consideration) for 20 epochs. Starting from these initial
models, we jointly optimize MPN and PEN by minimizing problem (3.2)
with β = 1 over 50 epochs. To evaluate the effectiveness of MPN, we
consider both in-distribution and OOD generalization assessment. The
generalization performance is measured by testing accuracy averaged
over attribute-wise predictions, namely,

∑
i(NiTA(i))/

∑
iNi, where Ni

is the number of classes of the model attribute i, and TA(i) is the testing
accuracy of the classifier associated with the attribute i (Fig. 3.1).

3.3.2 In-distribution Generalization of MPN

Table 3.3 presents the in-distribution generalization performance of
MPN trained using different input data formats (i.e., adversarial ex-
amples x′, PEN-estimated adversarial perturbations δPEN, and true

3.3. Experiments 33

adversarial perturbations δ) given each attack type in Table 3.1. Here
the choice of AT (architecture type) is fixed to ResNet9, but adversarial
attacks on CIFAR-10 are generated from VMs configured by different
values of KS, AF, and WS (see Table 3.2). As we can see, the generalization
of MPN varies against the attack type even if model parsing is conducted
from the ideal adversarial perturbations (δ). We also note that model
parsing from white-box adversarial attacks (i.e., FGSM, PGD, and AA) is
easier than that from black-box attacks (i.e., ZO-signSGD, NES, and
Square). For example, the worst-case performance of MPN is achieved
when training/testing on Square attacks. This is not surprising, since
Square is based on random search and has the least dependence on VM
attributes. In addition, we find that MPN using estimated perturbations
(δPEN) substantially outperforms the one trained on adversarial exam-
ples (x′). This justifies the effectiveness of our proposed PEN solution
for MPN.

Table 3.3: The in-distribution testing accuracy (%) of MPN trained using different
input data formats (adversarial examples x′, PEN-estimated adversarial perturba-
tions δPEN, and true adversarial perturbations δ) across different attack types on
CIFAR-10, with ℓ∞ attack strength ϵ = 8/255, ℓ2 attack strength ϵ = 0.5, and CW
attack strength c = 1.

Input data
Attack type

FGSM
PGD
ℓ∞

PGD
ℓ2

CW
AA
ℓ∞

AA
ℓ2

Square
ℓ∞

Square
ℓ2

NES
ZO-

signSGD

x′ 78.80 66.62 53.42 35.42 74.78 56.26 38.92 36.21 40.80 42.48

δPEN 94.15 83.20 82.58 64.46 91.09 86.89 44.14 42.30 58.85 61.20

δ 96.89 95.07 99.64 96.66 97.48 99.95 44.37 44.05 83.33 84.87

Extended from Table 3.3, Fig. 3.3 shows the generalization perfor-
mance of MPN when evaluated using attack data with different attack
strengths. We observe that in-distribution generalization (corresponding
to the same attack strength for the train-time and test-time attacks) is
easier to achieve than OOD generalization (different attack strengths
at test time and train time). Another observation is that a smaller gap
between the train-time attack strength and the test-time strength leads
to better generalization performance.

Table 3.3 and Fig. 3.3 concentrate on the model parsing of adversarial
attacks with a specific focus on the ResNet9 architecture implemented
on CIFAR-10. This examination, however, encompasses various combi-

34 Model Parsing via Adversarial Examples

4/255 8/255 12/255 16/255
Training attack strength ()

0
20
40
60
80

100

Te
st

in
g

ac
cu

ra
cy

 (%
)

96.0

71.9

56.1

39.9
47.2

95.1

66.2 66.1

39.7

61.1

94.9

74.5

35.3

53.2 53.6

91.3

Testing attack strength ()
4/255 8/255 12/255 16/255

Figure 3.3: Testing accuracies (%) of MPN when trained on adversarial perturba-
tions generated by PGD ℓ∞ using different attack strengths (ϵ) and evaluated using
different attack strengths as well. Other setups are consistent with in Table 3.3.

Table 3.4: In-distribution generalization performance (testing accuracy, %) of MPN
given different choices of VMs and datasets, attack types/strengths, and MPN input
data formats (x′, δPEN, and δ).

Attack
type

Attack
strength

Dataset and victim model
CIFAR-10
ResNet9

CIFAR-10
ResNet18

CIFAR-10
ResNet20

CIFAR-10
VGG11

CIFAR-10
VGG13

CIFAR-100
ResNet9

Tiny-ImageNet
ResNet18

x′ δPEN δ x′ δPEN δ x′ δPEN δ x′ δPEN δ x′ δPEN δ x′ δPEN δ x′ δPEN δ

FGSM

ϵ = 4/255 60.13 85.25 96.82 60.00 86.92 97.66 62.41 88.91 97.64 47.42 73.40 91.75 66.28 90.02 98.57 57.99 82.22 94.86 37.23 84.27 97.04
ϵ = 8/255 78.80 94.15 96.89 80.44 95.49 97.61 82.29 95.90 97.72 63.13 86.76 92.41 84.92 96.91 98.66 75.58 91.65 94.96 70.29 91.17 97.05
ϵ = 12/255 86.49 95.96 96.94 88.03 96.89 97.68 88.71 97.13 97.81 73.71 90.19 92.66 91.21 98.10 98.71 82.27 94.01 95.55 76.00 93.45 97.02
ϵ = 16/255 90.16 96.43 96.94 91.71 97.34 97.68 91.84 97.47 97.79 79.51 91.28 92.60 94.22 98.44 98.73 86.50 94.04 94.74 79.63 94.35 96.87

PGD ℓ∞

ϵ = 4/255 50.54 76.43 96.02 56.94 79.45 96.96 55.01 80.05 97.49 39.33 66.38 91.84 57.12 81.18 98.29 42.27 72.62 92.65 35.48 76.56 97.18
ϵ = 8/255 66.62 83.20 95.07 73.29 87.29 95.38 67.49 86.19 96.18 56.62 81.14 92.78 69.16 88.46 97.22 59.71 79.55 90.43 61.85 82.90 96.05
ϵ = 12/255 76.65 89.73 94.91 81.73 91.67 95.55 76.41 90.16 95.67 70.56 88.92 94.13 78.67 92.93 97.26 70.86 85.31 91.28 73.82 88.80 96.38
ϵ = 16/255 75.58 86.95 91.28 82.46 90.19 93.19 76.58 87.79 92.50 72.13 87.23 91.85 78.28 90.20 94.66 71.29 82.35 86.84 73.19 85.02 93.54

PGD ℓ2

ϵ = 0.25 36.75 62.20 99.66 46.35 70.17 99.74 48.24 77.22 99.75 36.47 45.17 98.52 35.81 70.62 99.85 35.92 61.91 99.29 35.55 35.68 99.68
ϵ = 0.5 53.42 82.58 99.64 60.89 84.70 99.56 61.62 89.11 99.61 41.56 66.58 98.68 57.83 87.64 99.83 48.89 79.26 99.01 35.52 54.56 99.71
ϵ = 0.75 62.66 89.04 99.48 71.01 89.89 99.22 70.76 92.06 99.36 47.02 78.12 98.52 72.76 92.32 99.74 59.19 85.14 98.61 35.56 81.33 99.71
ϵ = 1 71.65 91.73 99.26 77.09 92.09 98.94 76.84 92.82 98.96 54.20 84.30 98.41 79.93 93.96 99.57 66.97 87.63 97.89 43.48 88.81 99.64

CW
c = 0.1 33.77 55.60 96.71 47.77 63.26 96.11 33.56 63.11 94.10 33.73 48.90 94.37 33.68 65.48 96.95 34.41 46.47 92.55 35.96 35.77 95.52
c = 1 35.42 64.46 96.66 45.75 65.25 97.45 33.74 62.71 97.08 33.89 55.61 91.29 36.12 68.66 98.58 34.25 55.18 93.25 35.54 35.29 89.35
c = 10 36.38 64.45 96.64 45.83 65.32 97.41 33.83 63.52 97.11 38.29 56.83 91.33 38.51 68.28 98.62 34.25 55.89 93.18 35.45 53.18 94.20

nations of model attributes, resulting in multiple ResNet9-type VM
instances for generating attacks. Additionally, Table 3.4 highlights the
in-distribution generalization of MPN across a range of victim model
architectures and datasets. The findings align with those presented in
Table 3.3, revealing two key insights: (1) Utilizing actual adversarial
perturbations (δ) and perturbations estimated by PEN (δPEN) tends
to enhance model parsing accuracy. (2) The task of inferring model at-
tributes is comparatively more straightforward when utilizing white-box,
gradient-based adversarial perturbations, as evidenced by their testing
accuracy surpassing 90%. It is also observed that when adversarial
examples (x′) or PEN-estimated adversarial perturbations (δPEN) are
employed for model parsing, the accuracy improves with the increase in
the strength of the adversarial attacks.

3.3. Experiments 35

3.3.3 OOD Generalization of MPN vs. Unseen Attack Types

PG
D

FGSM
AA CW

PG
D 2

AA 2
NES

ZO-si
gn

SGD

Squ
ar

e
2

Squ
ar

e

Testing attack types

PGD

FGSM

AA

CW

PGD 2

AA 2

NES

ZO-signSGD

Square 2

Square

Combined

Tr
ai

ni
ng

 a
tt

ac
k

ty
pe

s
95.0 64.9 94.3 50.3 52.8 53.7 61.6 64.9 34.5 33.6

85.4 96.8 88.3 42.5 42.3 41.7 42.6 44.3 33.3 32.9

89.5 77.0 97.4 39.0 38.2 38.2 53.8 57.9 31.8 34.2

82.6 88.5 90.9 96.6 97.3 97.7 62.2 64.6 34.0 32.8

51.0 48.5 51.2 64.7 99.6 99.9 41.5 42.9 37.2 32.6

33.7 34.2 35.2 46.0 91.8 99.9 35.0 34.9 35.4 32.4

53.6 52.9 50.3 54.3 66.5 65.7 83.3 83.9 34.8 33.5

64.1 57.8 62.0 54.4 67.5 67.7 83.1 84.8 35.8 33.7

43.4 43.0 49.1 53.0 49.0 49.4 39.2 40.5 44.0 35.6

40.1 40.0 38.8 34.5 35.0 35.0 42.2 43.1 33.7 44.3

96.4 94.9 98.3 97.6 99.7 99.9 88.2 89.9 36.4 33.4
40

50

60

70

80

90

100

Figure 3.4: Generalization performance (%) matrix of MPN when trained on a
row-specific attack type but evaluated on a column-specific attack type. The attack
data are given by adversarial perturbations with strength ϵ = 8/255 for ℓ∞ attacks,
ϵ = 0.5 for ℓ2 attacks, and c = 1 for CW attack. The VM architecture and the dataset
are set to ResNet9 and CIFAR-10. The ‘combined’ row represents MPN training on
the collection of four attack types: PGD ℓ∞, PGD ℓ2, CW, and ZO-signSGD.

In Fig. 3.4, we exhibit the generalization matrix of MPN, demon-
strating its performance when trained on one type of attack (for instance,
the PGD ℓ∞ attack shown in row 1) and then tested on a different attack
type (such as the FGSM attack indicated in column 2). These adversarial
perturbations are generated from an array of ResNet9-based VMs on
CIFAR-10, each configured with various model attribute settings. The
matrix’s diagonal entries represent the in-distribution generalization
of MPN for each specific attack type, whereas the off-diagonal entries
reveal the OOD generalization, highlighting how MPN adapts when the
attack type at test time differs from that during training.

First, our analysis reveals that MPN exhibits enhanced cross-attack
type generalization when the attacks bear similarities. This observation
leads to the identification of generalization communities: ℓ∞ attacks

36 Model Parsing via Adversarial Examples

(including PGD ℓ∞, FGSM, and AA ℓ∞), ℓ2 attacks (comprising CW, PGD
ℓ2, and AA ℓ2), and zeroth-order optimization (ZOO)-based black-box
attacks (such as NES and ZO-signSGD). Second, we note that MPN
struggles with learning and generalizing from Square attacks, as re-
flected by the lower test accuracies observed in the last two rows and
columns of the matrix. This finding aligns with the data presented
in Table 3.3. Third, acknowledging the existence of these generaliza-
tion communities, we explore the potential of data augmentation by
amalgamating diverse attack types, including PGD ℓ∞, PGD ℓ2, CW, and
ZO-signSGD, into the MPN training dataset. We aim to assess whether
such augmentation enhances the out-of-distribution (OOD) general-
ization of MPN. The outcomes of this experiment are detailed in the
‘combined’ row of Fig. 3.4. As anticipated, the incorporation of a
combination of attack types does indeed improve MPN’s generalization
capabilities across various attack types, with the notable exception of
the random search-based Square attack.

3.3.4 Model Parsing via Transfer Attacks

Figure 3.5: Motivating example on model parsing of transfer attack. A successful
model parsing module can reveal the true source victim model.

In the context of model parsing as a practical application, we explore
the ability of MPN to accurately deduce the source VM attributes from
transfer attacks, where these attacks are employed against distinct mod-

3.3. Experiments 37

(R
eL

U
,3

,0
%

)
(R

eL
U

,3
,3

7.
5%

)
(R

eL
U

,3
,6

2.
5%

)
(R

eL
U

,5
,0

%
)

(R
eL

U
,5

,3
7.

5%
)

(R
eL

U
,5

,6
2.

5%
)

(R
eL

U
,7

,0
%

)
(R

eL
U

,7
,3

7.
5%

)
(R

eL
U

,7
,6

2.
5%

)
(t

an
h,

3,
0%

)
(t

an
h,

3,
37

.5
%

)
(t

an
h,

3,
62

.5
%

)
(t

an
h,

5,
0%

)
(t

an
h,

5,
37

.5
%

)
(t

an
h,

5,
62

.5
%

)
(t

an
h,

7,
0%

)
(t

an
h,

7,
37

.5
%

)
(t

an
h,

7,
62

.5
%

)
(E

LU
,3

,0
%

)
(E

LU
,3

,3
7.

5%
)

(E
LU

,3
,6

2.
5%

)
(E

LU
,5

,0
%

)
(E

LU
,5

,3
7.

5%
)

(E
LU

,5
,6

2.
5%

)
(E

LU
,7

,0
%

)
(E

LU
,7

,3
7.

5%
)

(E
LU

,7
,6

2.
5%

)

Transfer attack model

(ReLU,3,0%)
(ReLU,3,37.5%)
(ReLU,3,62.5%)

(ReLU,5,0%)
(ReLU,5,37.5%)
(ReLU,5,62.5%)

(ReLU,7,0%)
(ReLU,7,37.5%)
(ReLU,7,62.5%)

(tanh,3,0%)
(tanh,3,37.5%)
(tanh,3,62.5%)

(tanh,5,0%)
(tanh,5,37.5%)
(tanh,5,62.5%)

(tanh,7,0%)
(tanh,7,37.5%)
(tanh,7,62.5%)

(ELU,3,0%)
(ELU,3,37.5%)
(ELU,3,62.5%)

(ELU,5,0%)
(ELU,5,37.5%)
(ELU,5,62.5%)

(ELU,7,0%)
(ELU,7,37.5%)
(ELU,7,62.5%)

So
ur

ce
 v

ic
tim

 m
od

el

0

20

40

60

80

100

(R
eL

U
,3

,0
%

)
(R

eL
U

,3
,3

7.
5%

)
(R

eL
U

,3
,6

2.
5%

)
(R

eL
U

,5
,0

%
)

(R
eL

U
,5

,3
7.

5%
)

(R
eL

U
,5

,6
2.

5%
)

(R
eL

U
,7

,0
%

)
(R

eL
U

,7
,3

7.
5%

)
(R

eL
U

,7
,6

2.
5%

)
(t

an
h,

3,
0%

)
(t

an
h,

3,
37

.5
%

)
(t

an
h,

3,
62

.5
%

)
(t

an
h,

5,
0%

)
(t

an
h,

5,
37

.5
%

)
(t

an
h,

5,
62

.5
%

)
(t

an
h,

7,
0%

)
(t

an
h,

7,
37

.5
%

)
(t

an
h,

7,
62

.5
%

)
(E

LU
,3

,0
%

)
(E

LU
,3

,3
7.

5%
)

(E
LU

,3
,6

2.
5%

)
(E

LU
,5

,0
%

)
(E

LU
,5

,3
7.

5%
)

(E
LU

,5
,6

2.
5%

)
(E

LU
,7

,0
%

)
(E

LU
,7

,3
7.

5%
)

(E
LU

,7
,6

2.
5%

)

Predicted model

(ReLU,3,0%)
(ReLU,3,37.5%)
(ReLU,3,62.5%)

(ReLU,5,0%)
(ReLU,5,37.5%)
(ReLU,5,62.5%)

(ReLU,7,0%)
(ReLU,7,37.5%)
(ReLU,7,62.5%)

(tanh,3,0%)
(tanh,3,37.5%)
(tanh,3,62.5%)

(tanh,5,0%)
(tanh,5,37.5%)
(tanh,5,62.5%)

(tanh,7,0%)
(tanh,7,37.5%)
(tanh,7,62.5%)

(ELU,3,0%)
(ELU,3,37.5%)
(ELU,3,62.5%)

(ELU,5,0%)
(ELU,5,37.5%)
(ELU,5,62.5%)

(ELU,7,0%)
(ELU,7,37.5%)
(ELU,7,62.5%)

Tr
ue

 s
ou

rc
e

vi
ct

im
 m

od
el

1

2

2

2

0

20

40
60
80
100

(a) Attack successful rate (%) (b) Confusion matrix (%)
Figure 3.6: Model parsing of transfer attacks: Transfer attack success rate matrix
(a) and model parsing confusion matrix (b). Given the architecture type ResNet9,
the dataset CIFAR-10, and the attack type PGD ℓ∞ (with strength ϵ = 8/255), each
model attribute combination (AF, KS, WS) defines a model instance to be attacked,
transferred, or parsed.

els (illustrated in Fig. 3.5). Utilizing ResNet9 as the VM architecture,
we manipulate the values of model attributes KS, AF, and WS, resulting
in 27 unique ResNet9-type VMs. Fig. 3.6 displays both the transfer
attack success rate (ASR) matrix (Fig. 3.6a) and the model parsing
confusion matrix (Fig. 3.6b). The considered attack type is the PGD ℓ∞
attack with a strength of ϵ = 8/255 on CIFAR-10, and the adversarial
perturbations generated from these various VMs are utilized for training
and evaluating MPN.

In Fig. 3.6a, the off-diagonal entries indicate the ASRs of transfer
attacks originating from row-wise VMs and targeting column-wise mod-
els. We observe that adversarial attacks crafted from ReLU-based VMs
are generally more challenging to transfer to target models with smooth
activation functions, such as ELU or tanh. Conversely, given consistent
values of KS and AF, transferability across models with different weight
sparsity levels seems more feasible.

Fig. 3.6b portrays the confusion matrix for MPN trained on attack
data derived from all 27 ResNet9-like VMs. Each row in this matrix
corresponds to the actual VM used for generating the attack dataset,
while each column relates to a predicted model attribute configuration.
The diagonal entries represent the correct model parsing accuracy, and

38 Model Parsing via Adversarial Examples

the off-diagonal entries indicate the misclassification rates for incorrectly
predicted model attribute configurations. Notably, attacks generated
from ReLU-based VMs lead to a lower misclassification rate by MPN
for predictions involving ELU or tanh (as highlighted in the marked
region ①). However, a higher rate of misclassification is observed when
MPN is evaluated on attack data corresponding to varying WS values
(as indicated in the marked region ②). These findings, coupled with
the insights on ASRs of transfer attacks from Fig. 3.6a, imply a linkage
between the ease of transferability of attacks and the subsequent model
parsing difficulty: If attacks are challenging (or straightforward) to
transfer from a source model to a target model, the inference of source
model attributes from these attacks becomes easier (or harder).

3.4 Conclusion

This chapter has delved into the intricate realm of model parsing for
adversarial examples. We have shown that adversarial examples, while
primarily designed to mislead and deceive machine learning models,
carry with them a wealth of information about the source victim models
from which they originate. Through the lens of model parsing, these
adversarial perturbations transform from the knowledge-limited decep-
tion tools into rich sources of insight, enabling the reverse engineering
capability.

Our exploration highlighted that model parsing accuracy is signifi-
cantly influenced by the nature of the adversarial examples. Specifically,
the attributes of the victim models, such as architecture, activation
functions, and weight sparsity, play a pivotal role in determining the
effectiveness of model parsing. The ability to correctly infer these at-
tributes from adversarial examples opens up new avenues for enhancing
the security and trustworthiness of machine learning systems.

Moreover, the study of transfer attacks in the context of model
parsing presented intriguing findings. We noted that the transferability
of adversarial attacks is closely linked to the feasibility of model parsing.
Attacks that are challenging to transfer between models often provide
clearer signals for model parsing, enabling more accurate inference of
the source model’s attributes. Conversely, easily transferable attacks

3.4. Conclusion 39

tend to obscure the distinctive features necessary for effective model
parsing.

In conclusion, model parsing for adversarial examples stands as a
testament to the multifaceted nature of adversarial machine learning. It
underscores the potential to turn adversarial weaknesses into analytical
strengths. As we continue to advance in this field, the insights gained
from model parsing will undoubtedly contribute to the development of
more robust, secure, and transparent AI systems. Future research in
this domain holds the promise of further unraveling the complexities of
adversarial examples, paving the way for a deeper understanding and
enhanced resilience against adversarial threats.

4
Reverse Engineering of Generated Images

Chapter overview. Expanding upon RED techniques designed for
machine-centric attacks, this chapter shifts the focus to RED techniques
tailored for human-centric attacks. Specifically, we introduce the model
parsing of generative models, which infers that hyperparameters utilized
in the generative model are responsible for image synthesization. Notably,
we explore two types of dependencies that can enhance the overall
model parsing performance: dependencies among different generative
models and among different hyperparameters used in each generative
model. Building upon this insight, two methods–the two-stage model
parsing network (Chapter 4.3) and the learnable graph pooling network
(Chapter 4.4)–will be proposed in this chapter.

4.1 Motivation and Background

Recent advancements in image generation, particularly with the advent
of Generative Adversarial Networks (GANs) as cited in (Goodfellow
et al., 2014a), have led to significant improvements in the image quality.
Various Generative Models (GMs), including GANs and Variational
Autoencoders (VAEs) referenced in (Karras et al., 2019; Choi et al.,
2018; Karras et al., 2018; Kingma and Welling, 2014; Burgess et al.,

40

4.2. Problem Statement 41

2017; Chen et al., 2018; Dhariwal and Nichol, 2021), now possess the
ability to create highly realistic images, often indistinguishable from
actual photographs by humans. This level of photorealism, however,
brings forth concerns regarding the potential misuse of these technolo-
gies, such as orchestrating misinformation campaigns, as discussed in
(Waldemarsson, 2020; Heath, 2019). Consequently, the field of deepfake
detection, referenced in (Rossler et al., 2019; McCloskey and Albright,
2019; Guarnera et al., 2020; Marra et al., 2019b; Dang et al., 2020;
Nirkin et al., 2020), has garnered increased interest.

In an effort to advance beyond the conventional genuine versus fake
dichotomy prevalent in deepfake detection, Yu et al. (2019) introduced
the concept of source model classification for a given generated image.
This approach, termed image attribution, operates under the assumption
of a closed set of GMs, which are utilized in both the training and testing
phases.

The progression of image attribution towards open-set recognition, or
the ability to classify images generated by GMs not encountered during
training, is a sought-after goal. One might ponder what further insights
we can gain beyond merely categorizing a GM as an unseen or new
model. An intriguing question arises: Is it possible to discern the design
nuances of these new GMs? Can we determine how their architectures
diverge from those of the known GMs included in our training set?
Unraveling these aspects is crucial, particularly for defenders aiming to
trace the origins of images crafted by malevolent entities or to pinpoint
coordinated misinformation campaigns utilizing identical GMs. This
pursuit essentially forms the cornerstone of what we consider the grand
challenge in the reverse engineering of GMs.

4.2 Problem Statement

Our research aims to advance the field of image attribution for GMs
(generative models) by addressing a novel and challenging problem:
model parsing. Model parsing involves estimating the hyperparameters
of an unseen GM solely from its generated images. This approach is
rooted in the observation that different GMs primarily vary in their
model hyperparameters, such as network architectures (e.g., the number

42 Reverse Engineering of Generated Images

of layers/blocks, the type of normalization) and training loss functions.
The goal is to map generated images to the embedding space of the model
hyperparameters used to create them. While reverse engineering machine
learning models based on their input and output (Oh et al., 2019; Tramèr
et al., 2016), or by accessing hardware usage during inference (Hua et
al., 2018; Batina et al., 2019), has been previously explored, to our
knowledge, such an approach has not been applied to GMs using only
generated images as input. This research endeavors to fill this gap
by developing methods to accurately estimate the hyperparameters of
unseen GMs from their generated images, thereby contributing a new
dimension to the understanding and analysis of GMs.

4.3 Proposed Method 1: Two-stage Model Parsing Network

Our model comprises two main parts as illustrated in Fig. 4.1 (at
the bottom). The Fingerprint Estimation network (FEN) discerns the
subtle, distinct patterns that GMs imprint on the images they create.
Our approach to recognizing fingerprints is anchored on fundamental
fingerprint characteristics: magnitude, recurrence, spectral domain, and
symmetric spectral response. We define varied loss functions that im-
pose these characteristics to ensure that the recognized fingerprints
exhibit these crucial attributes. Such guidelines allow us to discern the
fingerprints of GMs even in the absence of a ground truth.

The fingerprints we identify are distinctive and become the founda-
tional element for further procedures.

Following this, the next segment of our design is the Parsing Network
(PN). This network interprets the extracted fingerprint and forecasts the
model’s hyperparameters. To capitalize on the resemblances amongst
various GMs, we categorize these GMs into multiple groupings, de-
termined by their original hyperparameters. Each GM’s average and
variance are computed. We use two different parsers: cluster parser and
instance parser to predict the mean and deviation of these parameters,
which are then combined as the final predictions.

4.3. Proposed Method 1: Two-stage Model Parsing Network 43

Figure 4.1: Top: Three increasingly difficult tasks: (a) deepfake detection
classifies an image as genuine or fake; (b) image attribution predicts which of
a closed set of GMs generated a fake image; and (c) model parsing, proposed
here, infers hyperparameters of the GM used to generate an image, for those
models unseen during training. Bottom: We present a framework for model
parsing, which can also be applied to simpler tasks of deepfake detection and
image attribution.

4.3.1 Data Collection

We make the first attempt to study the model parsing problem. Given
that research thrives on data, curating a dataset specific to this novel
research problem becomes paramount. Considering the proliferation of
GMs in recent literature (Wang et al., 2021b; Jabbar et al., 2020), our
selection criteria for GMs to incorporate in our dataset are based on
several factors. To this end, we assemble a list of 116 publicly available
GMs, including ProGan (Karras et al., 2018), StyleGAN (Karras et al.,
2019), and others. For each GM, we collect 1, 000 generated images.
Therefore, our dataset D comprises of 116, 000 images. These GMs

44 Reverse Engineering of Generated Images

Figure 4.2: Our framework includes two components: 1) the FEN is trained
with four objectives for fingerprint estimation; and 2) the PN consists of a
shared network, two parsers to estimate mean and deviation for each parameter,
an encoder to estimate fusion parameter, fully connected layers (FCs) for
continuous type parameters and separate classifiers (CLs) for discrete type
parameters in network architecture and loss function prediction. Blue boxes
denote trainable components; green boxes denote feature vectors; orange boxes
denote loss functions; red boxes denote other tasks our framework can handle;
black arrows denote data flow; orange arrows denote loss supervisions. Best
viewed in color.

were trained on datasets with various contents, such as CelebA (Liu
et al., 2015), MNIST (Deng, 2012), CIFAR10 (Krizhevsky, Hinton, et
al., 2009), ImageNet (Deng et al., 2009), facades (Zhu et al., 2017),
edges2shoes (Zhu et al., 2017), and apple2oranges (Zhu et al., 2017).
The dataset is available here. Additionally, we systematically catalog
the hyperparameters for each GM, as detailed in their corresponding
scholarly articles. Specifically, our focus encompasses two primary facets:
the underlying network architecture and the loss functions during the
training phase. We now discuss our framework step by step, with first
discussing about the FEN , followed by the PN.

4.3.2 Fingerprint Estimation Network (FEN)

We adopt a network structure similar to the DnCNN model used
in (Zhang et al., 2017). As shown in Fig. 4.2, the input to FEN is
a generated image X, and the output is a fingerprint image F of the

https://drive.google.com/file/d/1bAmC_9aMkWJB_scGvOOWvNeLa9FBoMUr/view?usp=sharing

4.3. Proposed Method 1: Two-stage Model Parsing Network 45

same size. Drawing inspiration from previous research on tangible fin-
gerprint estimation (Jourabloo et al., 2018; Zhang et al., 2019b; Wang
et al., 2020b; Yu et al., 2019; Marra et al., 2019a), we establish four guid-
ing constraints to ensure our deduced fingerprints exhibit the desired
characteristics.
Magnitude loss. Fingerprints are often conceptualized as image noise
patterns with minimal magnitudes. Hence, our inaugural constraint
is designed to regulate the fingerprint image to maintain a subdued
magnitude, utilizing an L2 loss:

Jm = ||F||22. (4.1)

Spectrum loss. We advocate for reducing the low-frequency compo-
nents within a fingerprint image by introducing a low-pass filter in its
frequency domain:

Js = ||L(F(F), f)||22, (4.2)

where F denotes the Fourier transform, and L represents the low-pass
filter that targets the central f × f region of the 2D Fourier spectrum,
setting all other values to zero.
Repetitive loss. We amplify the high-frequency data to accentuate
this recurring motif:

Jr = −max{H(F(F), f)}, (4.3)

Here, H acts as a high-pass filter, setting the central f × f domain of
the 2D Fourier spectrum to null.
Energy loss. (Wang et al., 2020b) demonstrated that distinctive pat-
terns are evident in the Fourier spectrum of images crafted by CNN
networks. Notably, these patterns exhibit comparable energy along the
vertical and horizontal axes of the Fourier spectrum. To encapsulate
this insight, we introduce our concluding constraint:

Je = ||F(F) − F(F)T ||22, (4.4)

where F(F)T symbolizes the transposition of F(F).
These outlined constraints steer the direction of our fingerprint

estimation training. As illustrated in Fig. 4.2, the cumulative fingerprint
constraint is expressed as:

Jf = λ1Jm + λ2Js + λ3Jr + λ4Je, (4.5)

46 Reverse Engineering of Generated Images

with λ1, λ2, λ3, λ4 functioning as individual loss weights for each
respective term.

4.3.3 Model Parsing Using Fingerprint

As visualized in Fig. 4.2, our framework incorporates two distinct parsers:
the cluster parser and the instance parser. These predictions are amal-
gamated to deduce both the network’s architectural design and its
associated loss functions. Subsequent sections delve into the mechanics
of ground truth computation and a comprehensive elaboration of our
framework’s intricacies.

Ground truth hyperparamters

Network architecture. Our main goal is not to retrieve all the spe-
cific network parameters. We focus on inferring key hyperparameters
that describe the network’s overall architecture. These are substantially
fewer than the actual network parameters and can provide a concise
understanding of the architecture. Building upon the foundation laid by
previous studies in neural architecture search (Tan et al., 2019; Pham
et al., 2018; Liu et al., 2018), we identify a set of 15 essential hyperparam-
eters that encompass various architectural features. For organizational
purposes, we divided the network architecture parameters, represented
as yn, into two categories: ync ∈ R9 for continuous parameters and
ynd ∈ R6 for discrete ones.
Loss function. Besides the intrinsic architecture of a network, the
parameters a model learns during training can significantly influence the
fingerprints found on the generated images. These learned parameters
are largely shaped by the training data and the loss functions employed
during the training process. Consequently, we delve into the potential
of predicting these training loss functions using the fingerprints we’ve
estimated. The dataset of 116 GMs makes use of 10 distinct loss functions
for training. To represent this information, we devise a ground-truth
vector, denoted by yl ∈ R10, where each element holds a binary value.
This binary value indicates the presence (or absence) of a particular
loss function during the training of a given model.

4.3. Proposed Method 1: Two-stage Model Parsing Network 47

Our framework aims to parse hyperparameters, which can be broadly
categorized into two: continuous and discrete. The former encapsulates
the continuous attributes related to network architecture, while the
latter encompasses discrete architectural details and parameters linked
to the loss function. For a streamlined explanation, we’ll segregate these
parameters based on their nature - continuous or discrete - through-
out this chapter. We represent these two sets of parameters as yc for
continuous and yd for discrete.

Prediction of parameters

Directly inferring the hyperparameters for each Generative Model (GM)
independently has proven to produce subpar results in our experiments.
Interestingly, several GMs in our dataset exhibit similarities in terms of
their network architectures or loss functions. Harnessing these inherent
similarities can potentially bolster the accuracy of hyperparameter
predictions.

To capitalize on these resemblances, we employ k-means clustering
to group the GMs into distinct clusters. Our approach encompasses
two levels of prediction: a broader, cluster-level prediction and a more
nuanced, GM-specific prediction. These two prediction levels are then
amalgamated to yield the final hyperparameter estimation.

Thus, we concatenate the ground truth network architecture param-
eters yn and loss function parameters yl, denoted as ynl. We use these
ground truth vectors to perform k-means clustering to find the optimal
k-clusters in the dataset D = {C1,C2, ...Ck}. Our clustering objective
can be written as:

argminD

k∑
i=1

∑
ynl

j
∈Ci

||ynlj − µi||2, (4.6)

where µi is the mean of the ground truth of the GMs in Ci.
To ascertain the cluster ground truth and prediction, we employ

distinct strategies tailored to continuous and discrete parameters:
For continous paramters, the prediction error is quantified using the

L2 loss, articulated as:
Jcu = ||ŷcu − ycu||22, (4.7)

48 Reverse Engineering of Generated Images

where ŷcu symbolizes the predicted cluster mean and ycu represents the
normalized ground truth of the cluster mean.

For discrete paramters, the loss term for discrete parameters cluster-
prediction is defined as:

Jdu = −
M∑
m=1

sum(ydum
⊙ log(S(ŷdum

))), (4.8)

where ydum
is the ground-truth one-hot vector for the respective class

in the m-th discrete type parameter, ŷdum
are the class logits, S is the

Softmax function that maps the class logits into the range of [0, 1], ⊙ is
the element-wise multiplication, and sum() computes the summation of
a vector’s elements.

Therefore, the clustering constraint is given by:
Ju = γ1J

c
u + γ2J

d
u , (4.9)

where γ1 and γ2 are the loss weights for each term.
For instance parser, we use the same procedure as stated above for

cluster prediction, but we change the ground truth vector. To compute
the ground truth deviation vector, denoted as yv, we take into consid-
eration two different types of parameters—continuous and discrete. For
continuous parameters, this deviation is characterized by the disparity
between an individual GM’s ground truth and its corresponding clus-
ter’s ground truth. Contrastingly, for discrete parameters, the innate
ground truth class for these parameters can serve as the deviation from
the cluster’s predominant class.

To gauge the accuracy of deviation-level prediction, appropriate loss
functions are employed. In the context of continuous parameters, the
L2 loss is leveraged to quantify the prediction error:

Jcv = ||ŷcv − ycv||22, (4.10)

Herein, ŷcv represents the predicted deviation, whilst ycv represents the
groud-truth deviation for continuous parameters.

The loss component for the deviation prediction of discrete parame-
ters is delineated as:

Jdv = −
M∑
m=1

sum(wm ⊙ ydvm
⊙ log(S(ŷdvm

))), (4.11)

4.3. Proposed Method 1: Two-stage Model Parsing Network 49

Here, ydvm
is the ground-truth one-hot deviation vector affiliated with

the m-th classifier. wm represents the weight vector associated with all
classes of the m-th classifier, and ŷdvm

corresponds to the class logits.
Incorporating the findings presented in Fig. 4.2, the cumulative

deviation constraint can be presented as:
Jv = γ3J

c
v + γ4J

d
v . (4.12)

Within this equation, γ3 and γ4 are the loss weights designated to each
respective term.

Continuous and discrete parameter integration

For the continuous parameter space, the process is straightforward.
The coarse-level predictions (reflecting broader general trends) and the
deviations (capturing finer individual-specific variations) are combined
using element-wise addition. The formula is represented as:

ŷc = ŷcu + ŷcv, (4.13)

This ensures that both the global trend and the granular deviations are
captured in the final prediction.

However, when it comes to the discrete parameter space, the task is
not as straightforward. Our initial approach, which involved an element-
wise addition of logits for every classifier from both parsers, did not
yield satisfactory results. This motivated us to explore an alternative
approach.

To reconcile the outputs from both parsers, we designed an encoder
network to predict a fusion parameter, denoted as p̂d, for every classifier.
This fusion parameter, constrained between 0 and 1, plays a pivotal role
in guiding how much weightage to give to the coarse versus granular
level prediction for each classifier.

To elucidate, for the m-th classifier, the fusion parameter pdm is
supervised by the ground truth and can be mathematically represented
as:

pdm =
{

1, ydum
= ydvm

0, ydum
̸= ydvm

.
(4.14)

In essence, this approach harmonizes the outputs from the cluster and
instance parsers in the discrete parameter space, optimizing the accuracy

50 Reverse Engineering of Generated Images

of the overall prediction.To train our encoder, we use the ground truth
fusion parameter pd which is the concatenation for all parameters. The
training is done via cross-entropy loss as shown below:

Jp = −
M∑
m=1

(pdmlog(G(p̂dm)) + (1 − pdm)log(1 − G(p̂dm))). (4.15)

where G is the Sigmoid function that maps the class logits into the
range of [0, 1].

As shown in Fig. 4.2 for discrete parameters, the final prediction is
given by:

ŷd = p̂d ⊙ ŷdu + (1 − p̂d) ⊙ ŷdv. (4.16)

The overall loss function for model parsing is given by:
J = Jf + Ju + Jv + γ5Jp. (4.17)

where γ5 is the loss weight for fusion constraint. Our framework is
trained end-to-end with fingerprint estimation (Eqn. 4.5) and model
parsing (Eqn. 4.17).

4.3.4 Experiments

In pioneering the field of GM parsing, we face the challenge of a lack of
existing comparative works. To construct a baseline for our research, we
draw an analogy with the image attribution task. In image attribution,
each model is typically symbolized as a one-hot vector, with uniform
inter-model distances in the dimensional space constituted by these
vectors. Conversely, in model parsing, we represent each model with
a 25-dimensional vector, partitioned into network architectures (15
dimensions) and training loss functions (10 dimensions), leading to
non-uniform distances among models in this 25-D space.

To establish a baseline, termed random ground-truth, we shuffle each
parameter’s values or classes across all 116 GMs. This ensures that
the assigned ground-truth deviates from the actual ground-truth while
retaining the authentic distribution of each parameter, implying that the
random ground-truth baseline does not rely on random chance. These
randomized vectors mirror the properties of our actual ground-truth
vectors regarding non-equal distances, yet they do not correspond to
the true model hyperparameters. We train and evaluate our proposed

4.3. Proposed Method 1: Two-stage Model Parsing Network 51

approach using this randomly shuffled ground-truth. Given the inherent
randomness of this baseline, we execute three random shufflings and
report the averaged performance.

Additionally, we investigate a baseline where continuous hyperparam-
eters are always predicted as their mean, and discrete hyperparameters
as their mode, across the four sets. These mean/mode values, repre-
senting central tendencies, might offer adequate performance for model
parsing.

In order to verify the effectiveness of our proposed fingerprint es-
timation constraints, we undertake an ablation study. This involves
training our framework exclusively with the model parsing objective, as
outlined in Eqn. 4.17. This procedure establishes what we term the no
fingerprint baseline. Additionally, to emphasize the significance of our
clustering and deviation parser, we implement an approach where the
network architecture and loss functions are determined using a single
parser. This parser directly estimates the parameters, as opposed to
calculating a mean and deviation. We denote this approach as the using
one parser baseline.

Network architecture prediction

The outcomes of our network architecture prediction are summarized in
Table 4.1. Our method exhibits notably lower L1 error rates in compari-
son to the random ground-truth baseline for continuous parameters, and
superior classification accuracy and F1 scores for discrete parameters.
These results suggest a substantial and generalizable link between the
generated images and the meaningful architecture hyperparameters and
loss function types’ embedding space, surpassing a random vector with
the same length and distribution. This significant correlation underpins
the validity and feasibility of model parsing for GMs.

Moreover, our approach surpasses the mean/mode baseline, indicat-
ing that merely predicting the average for continuous parameters falls
short. The inferior outcomes when omitting fingerprint estimation ob-
jectives highlight their critical role in model parsing. By comparing the
results of using just one parser against our full method, the superiority
of our approach, especially in estimating mean and deviation, is clearly

52 Reverse Engineering of Generated Images

Table 4.1: Performance of network architecture prediction. We use L1 error, p-
value, correlation coefficient, coefficient of determination and slope of RANSAC
regression line for continuous type parameters. For discrete parameters, we
use F1 score and classification accuracy. We also show the standard deviation
over all the test samples for L1 error. The first value is the standard deviation
across sets, while the second one is across the samples. The p-value would be
estimated for every ours-baseline pair. Our method performs better for both
types of variables compared to the three baselines. [KEYS: corr.: correlation,
coef.: coefficient, det.: determination]

Method Continuous type Discrete type
L1 error ↓ P-value ↓ Corr. coef. ↑ Coef. of det. ↑ Slope ↑ F1 score ↑ Accuracy ↑

Random ground-truth 0.184 ± 0.019/0.036 0.006 ± 0.001 0.261 ± 0.181 0.315 ± 0.095 0.592 ± 0.041 0.529 ± 0.078 0.575 ± 0.097
Mean/mode 0.164 ± 0.011/0.016 0.035 ± 0.005 0.326 ± 0.112 0.467 ± 0.015 0.632 ± 0.024 0.612 ± 0.048 0.604 ± 0.046
No fingerprint 0.170 ± 0.035/0.012 0.017 ± 0.004 0.738 ± 0.014 0.605 ± 0.152 0.892 ± 0.021 0.700 ± 0.032 0.663 ± 0.104
Using one parser 0.161 ± 0.028/0.035 0.032 ± 0.002 0.226 ± 0.030 0.512 ± 0.116 −0.529 ± 0.075 0.607 ± 0.034 0.593 ± 0.104
Ours 0.149 ± 0.019/0.014 - 0.744 ± 0.098 0.612 ± 0.161 0.921 ± 0.021 0.718 ± 0.036 0.706 ± 0.040

demonstrated.
For continuous parameters, we delve deeper into the efficacy of re-

gression predictions by employing three key metrics: the correlation co-
efficient, the coefficient of determination, and the slope of the RANSAC
regression line. These metrics are calculated based on the comparison
between the predictions and the ground-truth values. Additionally, we
conduct a t-test for each pair comparing our method with the baseline,
where the null hypothesis assumes that the sequence of sample-wise L1
error differences originates from a zero-mean Gaussian distribution. The
p-value, calculated for each comparison, averages below 0.05 across all
four sets. This statistically significant result leads to the rejection of the
null hypothesis, affirming the substantial improvement of our method.
Closer to 1, the values of these metrics signify more effective regression.
Our method records a slope of 0.921, a correlation coefficient of 0.744,
and a coefficient of determination of 0.612, all indicating the robustness
of our approach. Furthermore, our method consistently surpasses all
baselines across these three metrics.

Loss function prediction

F1 scores and classification accuracy metrics are employed to assess
the performance related to loss function parameters. These results are

4.4. Proposed Method 2: Learnable Graph Pooling Network 53

Table 4.2: F1 score and classification accuracy for loss type prediction. Our
method performs better than all the three baselines.

Method Loss function prediction
F1 score ↑ Classification accuracy ↑

Random ground-truth 0.636 ± 0.017 0.716 ± 0.028
Mean/mode 0.751 ± 0.027 0.736 ± 0.056
No fingerprint 0.800 ± 0.116 0.763 ± 0.079
Using one parser 0.687 ± 0.036 0.633 ± 0.052
Ours 0.813 ± 0.019 0.792 ± 0.021

detailed in Table 4.2. The outcomes for the random ground-truth
baseline approximate the level of random guessing. In contrast, our
method significantly outshines all baselines, demonstrating superior
performance in these metrics.

Practical applications of model parsing

As the inaugural proposers of the model parsing task, it’s pertinent
to consider what level of performance is necessary for model parsing
to be practically viable in real-world scenarios? A plausible criterion
for practical utility is an error rate below 10%. This benchmark is
established by examining two highly similar generative models in our
dataset, RSGAN_HALF and RSGAN_QUAR, which differ in merely
2 out of 15 parameters. This comparison suggests that an error margin
under 10% is satisfactory, as it remains below the variation between
these closely related models. Consequently, for model parsing to be
considered effective in practical applications, we anticipate an L1 error
of less than 0.1 and an F1 score exceeding 90%. Our method attains an
L1 error marginally over 10% (specifically 0.14) and an F1 score around
80%, both within reasonable proximity to these set thresholds.

4.4 Proposed Method 2: Learnable Graph Pooling Network

In the preceding context, we detailed our proposed model parsing
method, which harnesses the effectiveness of estimated fingerprints for
each image, resulting in remarkable performance in predicting both the

54 Reverse Engineering of Generated Images

loss function and architecture parameters. However, this approach pri-
marily focuses identifying correlations among generative models (GMs)
through a clustering-based method, with less emphasis on learning de-
pendencies among the 37 hyperparameters that need to be parsed. Given
that the generative model utilizes a varied set of hyperparameters jointly,
and considering inherent dependencies among these hyperparameters,
it is actually essential to leverage such hyperparameters dependencies
for enhancing the model parsing performance.

To offer an alternative solution for model parsing, we introduce
the second model parsing approach, which focuses more on capturing
dependencies among various hyperparameters. Specifically, we first for-
mulate model parsing into a graph node classification problem (See
Chapter 4.4.1) and then propose a novel model parsing method called
Learnable Graph Pooling Network (LGPN), which leverages the effective-
ness of Graph Convolution Network (GCN) in capturing the correlation
among graph nodes (Kipf and Welling, 2016; Veličković et al., 2017;
Fan et al., 2019; Guo et al., 2019; Hsu et al., 2021). The architecture of
LGPN is shown in Fig. 4.4, and its details are in Chapter 4.4.2.

4.4.1 Preliminary

First, we outline the process of transforming model parsing into a graph
node classification task. Then, we revisit Graph Convolution Network
for a comprehensive understanding of its role and relevance in our
approach.

Model parsing graph formulation

First, we integrate diffusion models into the RED dataset utilized in the
previous work (Asnani et al., 2023b), resulting in an expanded dataset
denoted as RED140, comprising 140 diverse Generative Models (GMs)1.
Following this, we utilize the label co-occurrence pattern among train-
ing samples in RED140 to construct a directed graph, as illustrated in

1We adhere to the nomenclature introduced in the preceding work (Asnani et al.,
2023b), illustrated in the pie chart of Fig. 4.3a, where AA, AR, and NF denote
Adversarial Attack models, Auto-Regressive models, and Normalizing Flow models,
respectively.

4.4. Proposed Method 2: Learnable Graph Pooling Network 55

NF
4% DM

19%
AR
5%GAN

57%

AA
5%

VAE
10% L1

MSE
ReLu

tanh

Batch
Norm.

Param.
Num.

Layer
Num.

(a) (b) (c)
(a) (b) (c)

Used or Not

Used or Not

Param. Num.
Value

Param. Num.

Param. Num.

Param. Num.Param. Num.

Param. Num.

Param. Num.

Figure 4.3: (a) We study the co-occurrence pattern among different hyperparameters
in 140 different GMs, whose composition is shown as the pie chart, and subsequently
construct a directed graph to capture dependencies among these hyperparameters.
(b) We define the discrete-value graph node () (e.g., L1 and Batch Norm) for each
discrete hyperparameter. For each continuous hyperparameter (), we partition
its range into n distinct intervals, and each interval is then represented by a graph
node. For example, Parameter Number has three corresponding continuous-value
graph nodes. (c) In the inference, discrete-value graph node features are used to
classify if discrete hyperparameters are used in the given GM. Also, we concatenate
corresponding continuous-value graph node features and regress the continuous
hyperparameter value.

Fig. 4.3a. This directed graph, formed based on the label co-occurrence
pattern, highlights the fundamental correlations between different cate-
gories and has proven effective in various applications with GCN-based
methods (Chen et al., 2019; Ye et al., 2020; Nguyen et al., 2021; Ding
et al., 2021; Tirupattur et al., 2021). In our approach, this directed
graph is tailored to model parsing, where we define discrete-value and
continuous-value graph nodes to represent hyperparameters that require
parsing, as depicted in Fig. 4.3b.

More formally, we first denote the conditional probability P (Lj |Li),
representing the probability of hyperparameter Lj occurring when
hyperparameter Li is present. We count the occurrence of such a pair
in the RED140 to retrieve the matrix G ∈ RC×C (C is the hyper-
parameter number), and Gij denotes the conditional probability of
P (Lj |Li). Subsequently, we employ a fixed threshold τ to filter out
edges with low correlations. Consequently, we obtain a directed graph
A ∈ RC×C where each element Aij is a binary value indicating the
presence of an edge between node i and j. In this graph data structure,
we can leverage graph nodes and edges to represent hyperparameters
and their dependencies, respectively.

We represent each discrete hyperparameter, such as discrete archi-

56 Reverse Engineering of Generated Images

tecture parameters and objective functions, as a graph node, specifically
denoted as a discrete-value graph node, as shown in Fig. 4.3b. For con-
tinuous hyperparameters, such as layer number and parameter number,
we initially divide the range into n different intervals, with each interval
represented by a graph node termed as a continuous-value graph node.
We cast the model parsing problem as a graph node classification task.
In this setup, the discrete-value graph node feature determines whether
a given hyperparameter is utilized in the GM, while the continuous-
value node feature indicates the range within which the hyperparameter
falls. This formulation facilitates the extraction of effective representa-
tions for hyperparameters, consequently enhancing the model parsing
performance.

Stack graph convolution layers

Given the directed graph denoted as A, let’s revisit the fundamental
formulation of the Graph Convolution Network (GCN). In this context,
we can express the stacked graph convolution operation as follows:

hli = ReLU(
N∑
j=1

Ai,jWlhl−1
j + bl), (4.18)

hli denotes the feature of the i-th node in graph A, and Wl and bl
represent the associated weight and bias terms. It’s worth noting that
different nodes in the graph have different degrees, leading to significant
differences in magnitudes for the aggregated node features. This variabil-
ity can hinder the acquisition of an effective graph node representation,
as the learning process tends to be biased towards nodes with higher
degrees. To this end, we formulate the Eq. 4.18 into:

hli = ReLU(
N∑
j=1

Âi,jWlhl−1
j /di + bl), (4.19)

where Â = A + I and I is an n× n identity matrix, and di is degree of
node i, namely, di =

∑n
j=1 Âij .

4.4. Proposed Method 2: Learnable Graph Pooling Network 57

G
C
N
block

G
C
N
block

L-Pooling

G
C
N
block

L-Pooling

G
C
N
block

U
npooling

G
C
N
block

U
npooling

ℎ%
ℎ+

.
-

Feature
Extractor

GCN refinement

+%
++

2

Model
Parsing

/! /% /+ /′+ /′% /′!

0! 0% 0!
/0%

/

Dual-branch
Feature
Extractor

𝐡!
𝐡"

𝐈

𝐡#$!
…

𝐇 𝐕

𝐯"

𝐯#$!
…

𝐯!

GCN Refinement Block

Figure 4.4: Learnable Graph Pooling Network. Initially, we employ the dual-
branch feature extractor, illustrated in Fig. 4.5, to extract the feature H from the
input image I. Subsequently, the obtained feature H undergoes refinement through
the proposed GCN refinement block, which stacks different GCN layers with paired
pooling-unpooling layers. The output of the GCN refinement block is the refined
feature V, utilized for the model parsing task. Our method is trained jointly with
three different objective functions.

4.4.2 Learnable Graph Pooling Network

We introduce our proposed LGPN, which contains a dual-branch feature
extractor and a Graph Convolution Network (GCN) refinement block,
as depicted in Fig. 4.4. More formally, given the input image, the
dual-branch feature extractor (Fig. 4.5) learns the image representation
that is then transformed into a set of graph node features. Graph node
features along the pre-defined directed graph are fed into the GCN
refinement block (see chapter 4.4.2).

Dual-branch feature extractor

In the field of image forensics, a common practice involves the use of
specialized-design feature extractors for tasks such as distinguishing
between real and CNN-generated images (Masi et al., 2020; Wang
et al., 2020b; Schwarz et al., 2021; Durall et al., 2020) or identifying
manipulated regions (Bayar and Stamm, 2018; Dong et al., 2022; Wu
et al., 2019; Zhou et al., 2018; Zhou et al., 2017). In the context of these
established approaches, our work introduces a simple yet effective feature
extractor, which is structured as a dual-branch network (Fig. 4.5) —
given the input image, we use one branch (i.e., ResNet branch) to
propagate the original image information, meanwhile, the other branch,

58 Reverse Engineering of Generated Images

Conv
(3,3)

ResNet
Block #1

Conv
(5,5)

Conv
(7,7)

Fu
si
on
La
ye
r

ResNet
Block #2

ResNet
Block #3

ResNet
Block #4

⊕Φ! ⊕Φ"
⊕Φ#

⊕Φ$

Fu
si
on
La
ye
r

I

ResNet branch

High-res branch

𝐹! 𝑓

Figure 4.5: The dual-branch feature extractor. First, convolution layers with
different kernel sizes extract feature maps of the input image I. A fusion layer
concatenates these feature maps and then proceeds the concatenated feature to the
ResNet branch and high-res branch. ResNet branch consists of pre-trained ResNet
blocks, while the high-res branch maintains the high-resolution representation to help
detect generation artifacts. Lastly, output features of two branches are combined for
downstream tasks, such as model parsing and CNN-generated image detection.

denoted as high-res branch, harnesses the high-resolution representation
that helps detect high-frequency generation artifacts originating from
various generative models.

Formally, for a given the image I ∈ R3×W×H , we employ three
distinct 2D convolution layers, each utilizing different kernel sizes (e.g.,
3×3, 5×5, and 7×7), to extract feature maps from I. Subsequently, we
concatenate these feature maps and pass them through a fusion layer,
represented by a 1×1 convolution layer, designed for channel dimension
reduction. Consequently, we obtain the feature map Fh ∈ RD×W×H ,
sharing the same height and width as I.

Subsequently, we feed Fh through the dual-branch backbone. The
ResNet branch consists of four pre-trained ResNet blocks, commonly
employed as a standard baseline for generalized CNN-generated image
detection (Wang et al., 2020b; Ojha et al., 2023). Intermediate features
produced by each ResNet block are upsampled and integrated into the
high-res branch, as depicted in Fig. 4.5. The high-res branch is also
equipped with four distinct convolution blocks (e.g., Φb with b ∈ 1 . . . 4),
which avoid operations such as 2D convolution with large strides and
pooling layers that spatially downsample feature maps. The incorpo-
ration of high-resolution representation follows a similar strategy to
previous works (Trinh et al., 2021; Boroumand et al., 2018; Liu et al.,
2022; Guo et al., 2023b; Gragnaniello et al., 2021) that also harness
such potent representation for various image forensic tasks, whereas our

4.4. Proposed Method 2: Learnable Graph Pooling Network 59

dual-branch architecture is distinct to their approaches.
Finally, the output feature maps from both the ResNet branch and

the high-res branch are concatenated and passed through an AVGPOOL
layer. The resulting learned representation, f ∈ RD, is designed to
capture the generation artifacts present in the input image I. This
learned image feature can deduce the crucial information of used GMs
and benefits model parsing. We learn C independent linear layers,
i.e., Θ = {θC−1

i=0 } to transform f into a set of graph node features
H = {h0,h1, ...,h(C−1)}, which can form as a tensor, H ∈ RC×D. We
use H to denote graph node features of the directed graph (i.e., graph
topology) A ∈ RC×C .

GCN refinement block

The GCN refinement block introduces a learnable pooling-unpooling
mechanism that progressively transforms the original graph A0 into
a sequence of coarsened graphs A1,A2, . . . ,An. Graph convolution is
then applied to these graphs at different levels. The pooling operation
involves the merging of graph nodes, facilitated by a learned matching
matrix M. Moreover, correlation matrices of different graphs, denoted
as Al

2, are learned using MLP layers. Importantly, these correlation
matrices are influenced by the generative model (GM) responsible for
generating the input image, underscoring the significant impact of the
GM on the generation of correlation graphs.

Learnable graph pooling layer. First, Al ∈ Rm×m and Al+1 ∈
Rn×n denote directed graphs at l th and l + 1 th layers, which have m
and n (m ≥ n) graph nodes, respectively. We use an assignment matrix
Ml ∈ Rm×n to convert Al to Al+1 as:

Al+1 = Ml
TAlMl. (4.20)

Also, we use Hl ∈ Rm×D and Hl+1 ∈ Rn×D to denote graph node
features of Al and Al+1, where each graph node feature is D dimensional.
Therefore, we can use Ml to perform the graph node aggregation via:

Hl+1 = Ml
THl. (4.21)

2Here, a graph at the l-th layer and its correlation are denoted as Al.

60 Reverse Engineering of Generated Images

For the simplicity, we use fGCN denotes the mapping function that is
imposed by a GCN block which has multiple GCN layers. Hin

l and Hout
l

are the input and output feature of the l th GCN blocks:
Hout
l = fGCN (Hin

l). (4.22)

The ideal scenario involves making the pooling operation and cor-
relation among different hyperparameters dependent on the features
extracted from the given input image, denoted as f . Assuming the
learned feature at the l-th layer is Hout

l , we employ two separate sets of
weights, namely Wm and Wa, to learn the matching matrix Ml and
the adjacency matrix Al at the l-th layer. This can be expressed as:

Ml+1 = softmax(WmHout
l), (4.23)

Al+1 = sigmoid(WaHout
l). (4.24)

Learnable graph unpooling layer. We perform the graph un-
pooling operation, which restores and refines the information in the
graph to its original resolution for the initial graph node classification
task. Illustrated in Fig. 4.4, to eliminate confusion, we use H and V to
denote the graph node features on the pooling and unpooling branches,
respectively. The correlation matrix on the unpooling branch is denoted
by A′.

A′
l−1 = MlA′

lMT
l , (4.25)

Vl−1 = MlVl, (4.26)

where A′
l and A′

l−1 are the l th and l − 1 th layers in the unpooling
branch. In the last, we use the refined feature Vl for the model parsing,
as depicted in Fig. 4.4.

Discussion. This learnable pooling-unpooling mechanism offers
three distinct advantages. Firstly, each supernode in the coarsened
graph serves as the combination of features from its corresponding child
nodes, and graph convolutions on supernodes have a large receptive
field for aggregating the features. Secondly, the learnable correlation
adapts and models hyperparameter dependencies dynamically based on
generation artifacts of the input image feature (e.g., H or V). Lastly,
learned correlation graphs A vary across different levels, which effectively

4.4. Proposed Method 2: Learnable Graph Pooling Network 61

addresses the issue of over-smoothing commonly encountered in GCN
learning (Li et al., 2019; Min et al., 2020; Chen et al., 2020). Therefore,
through this pooling-unpooling mechanism, we are able to learn a
correlation between hyperparameters that is dependent on the GM used
to generate the input image, thereby enhancing the performance of
model parsing.

4.4.3 Training with Multiple Loss Functions

We jointly train our approach by minimizing three distinct losses: the
graph node classification loss Lgraph, generation artifacts isolation loss
Liso and hyperparameter hierarchy constraints Lhier.. In this context,
Lgraph encourages each graph node feature to predict the corresponding
hyperparameter label, Liso strives to project real and fake images into
two separated manifolds, aiding LGPN in exclusively parsing hyperpa-
rameters for generated images. Furthermore, Lhier enforces hierarchical
constraints among different hyperparameters, contributing to the sta-
bility of the training process.

Training samples. Given a training sample denoted as {I,y}, in
which I is the input image and y = {y0, y1, ..., y(C−1)} is the correspond-
ing annotation for parsed hyperparameters (e.g., loss functions, discrete
and continuous architecture parameters). Specifically, yc is assigned as
1 if the sample is annotated with category c and 0 otherwise, where
c ∈ {0, 1, ..., C − 1}. Empirically, C is set as 55: we use 28 graph nodes
to represent discrete hyperparameters (i.e., 10 loss functions and 18
discrete architecture parameters), and other 27 nodes to represent 9
continuous architecture parameters.

Graph node classification loss. Given image I, we convert the
refined feature V into the predicted score vector, denoted as s =
{s0, s1, ..., s(C−1)}. We employ the sigmoid activation to retrieve the
corresponding probability vector p = {p0, p1, ..., p(C−1)}.

pc = σ(sc). (4.27)

In general, cross entropy is used as the objective function, so we have:

Lgraph =
C−1∑
c=0

(yc log pc + (1 − yc) log(1 − pc)). (4.28)

62 Reverse Engineering of Generated Images

Hyperparameter hierarchy prediction. Different hyperparame-
ters can be grouped together. For example, we group two graph nodes
which represent L1 and MSE, respectively, since these two hyperparam-
eters are two pixel-level loss functions; Two nodes representing ReLu
and Tanh can be merged together, because these two hyperparameters
are nonlinearity functions. Therefore, we define the hyperparameter
hierarchy assignment Ms to reflect this inherent nature. Suppose, at
the layer l th, we minimize the L2 norm of the difference between the
predicted matching matrix Ml and Ml

s.

Lhier = ∥Ml
s − Ml∥2 =

√∑
i=0

∑
j=0

(ms
ij −mij)2 (4.29)

Generation trace isolation loss. We denote the image-level
binary label as yimg and use pimg to represents the probability that I is
a generated image. Then we have:

Liso =
M−1∑
i=0

(yimg log pimg + (1 − yimg) log(1 − pimg)). (4.30)

In summary, our joint training loss function can be expressed as
Lall = λ1Lgraph + λ2Lhier + λ3Liso, where λ1 and λ2 equal 0 when I is
real.

4.4.4 Experimental Result

Each GM in RED116 and RED140 comprises 1, 000 images, resulting
in a total of 116, 000 and 140, 000 generated images, respectively. GMs
in these two datasets are trained on real image datasets containing
various contents such as objects, handwritten digits, and human faces.
Consequently, in RED140, we also incorporate real images on which
these GMs are trained. We adhere to the protocol outlined in (Asnani
et al., 2023b), which involves the creation of 4 test sets. Each of these
sets have different categories of GMs, including GAN, VAE, DM, and
others. We train our model on the 104 GMs from three test sets to
predict 37 hyperparameters. The evaluation is conducted on GMs in
one remaining test set. The performance is averaged across four test
sets, measured by F1 score and AUC for discrete hyperparameters
(loss function and discrete architecture parameters) and L1 error for
continuous architecture parameters.

4.4. Proposed Method 2: Learnable Graph Pooling Network 63

Method
Loss

Function
Dis. Archi.

Para.
Con. Archi.

Para.
F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ L1 error ↓

Random GT ((Asnani et al., 2023b)) 0.636 0.716 0.529 0.575 0.184
FEN ((Asnani et al., 2023b)) 0.813 0.792 0.718 0.706 0.149

FEN.∗ ((Asnani et al., 2023b)) 0.801 0.811 0.701 0.708 0.146
LGPN w/o GCN 0.778 0.801 0.689 0.701 0.169

LGPN w/o pooling 0.790 0.831 0.698 0.720 0.145
LGPN 0.841 0.833 0.727 0.755 0.130

(a) The model parsing performance on RED116.

Method
Loss

Function
Dis. Archi.

Para.
Con. Archi.

Para.
F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ L1 error ↓

FEN. ((Asnani et al., 2023b)) 0.793 0.807 0.691 0.707 0.156
LGPN w/o GCN 0.766 0.778 0.657 0.674 0.159

LGPN w/o pooling 0.819 0.823 0.710 0.732 0.122
LGPN 0.829 0.840 0.761 0.753 0.105

(b) The model parsing performance on RED140.

Table 4.3: We report the performance on parsing different hyperparameters, Loss
Function reports the averaged prediction performance on 10 objective functions.
The averaged prediction performance on 18 discrete architecture parameters and 9
continuous architecture parameters are reported in Dis. Archi. Para. and Con. Archi.
Para., respectively. [Bold: best result; ∗ means our reproduction with the public
source code.]

We report the model parsing performance in Table 4.3. Our pro-
posed method significantly surpasses FEN and achieves state-of-the-art
performance on both datasets. We conduct various ablations on our
methods. Initially, we employ the dual-branch feature extractor with
fully-connected layers for model parsing, which yields inferior perfor-
mance compared to FEN (Asnani et al., 2023b) in both RED116 and
RED140 datasets. This suggests that a straightforward adaptation to
model parsing does not yield satisfactory results. Second, we replace
fully-connected layers with the GCN module without pooling, which
is used to refine the learned feature for each hyperparameter. As a
result, the performance increases, especially on parsing the loss func-
tions (e.g., 3.0% and 4.5% higher accuracy in RED116 and RED140,
respectively). This observation aligns with our assertion that employ-
ing a directed graph with GCN refinement modules aids in capturing
dependencies among hyperparameters. Nonetheless, the over-smoothing
problem emerges when stacking numerous GCN layers, limiting the
overall performance. In our complete LGPN model, this issue is miti-

64 Reverse Engineering of Generated Images

3

1.00

5

1.00

3

1.00

3

1.00

3

1.00

3

1.00

5

1.00

3

1.00

3

1.00

3

1.00

Figure 4.6: Cosine similarity between generated correlation graphs for unseen GMs
in four test sets. Each element of these matrices is the average cosine similarities
of 2, 000 pairs of generated correlation graphs A from corresponding GMs. These
matrices diagonals show two images from the same GM have highly similar correlation
graphs A.

gated, leading to a 5.1% and 2.9% improvement in F1 score compared
to the model without pooling, particularly in parsing the loss function
and discrete architecture parameters.

Fig. 4.6 shows that correlation graphs generated from image pairs
exhibit significant similarity when both images belong to the same
“unseen” GM. This finding demonstrates that our correlation graph
largely depends on the GM instead of image content, considering the
different contents present in the unseen GMs from each test.

4.5 Conclusion

This chapter expands upon RED techniques, shifting focus from machine-
centric to human-centric attacks, and introduces model parsing of
generative models (GMs). Specifically, model parsing of GMs aims to
infer the hyperparameters used in GMs, given the human-attack samples.
We propose two novel methods: the two-stage model parsing network
and the learnable graph pooling network, which consider dependencies
among various GMs and their specific hyperparameters, respectively.
Additionally, this chapter is motivated by the rapid advancements in
image generation, especially with GANs and diffusion models, and the
rising concerns over their misuse. Furthermore, our research addresses
the challenge of model parsing, a process of reverse engineering GMs
to estimate their hyperparameters based solely on generated images, a
concept largely unexplored in existing literature. This endeavor enhances
the understanding and analysis of GMs, adding a new layer to the field
of image attribution and deepfake detection.

5
Manipulation Localization of Generated Images

Chapter overview Nowadays, individuals can easily be misled by high-
quality and realistic manipulated images (i.e., human-centric attack
samples). Also, well-rounded RED techniques should be able to counter-
act such dissemination of misleading information. Therefore, this chapter
delves into the research topic of manipulation localization, building on
the recent progress in model parsing discussed in the previous chapter.
Moreover, manipulation localization has been extensively studied in
the Computer Vision community and aligns with the human-centric
perspective inherent in the RED paradigm. In this chapter, we present
passive and proactive localization schemes in Chapter 5.3 and Chap-
ter 5.4, respectively, which can localize manipulations in image editing
and digital domains.

5.1 Motivation and Background

The widespread availability of user-friendly editing software and ad-
vancements in manipulation techniques from the image editing domain,
such as splicing, copy-move, and removal, has made low-cost image
manipulation more accessible. Secondly, in the digital domain, the de-
tection of manipulated facial images and videos has become a critical

65

66 Manipulation Localization of Generated Images

concern, especially with the rising prevalence of these manipulated me-
dia in social media platforms. This growing trend underscores the urgent
need for the development of effective methods that can not only detect
manipulated face images but also precisely localize the manipulated
regions within them. To this end, there is a pressing need for a unified
algorithm capable of localizing manipulation areas in both digital and
image editing domains.

In the early stage, numerous existing approaches concentrated on
pixel-wise classification to detect manipulated regions in the image-
editing domain (Wu et al., 2019; Hu et al., 2020; Zhou et al., 2018;
Mayer and Stamm, 2018; Chen et al., 2021; Wang et al., 2022; Zhou
et al., 2020). For instance, in a recent development, (Ji et al., 2023)
introduced an uncertainty-guided framework to quantify data and model
uncertainties, and (Zhou et al., 2023) proposed a framework applying
conventional contrastive learning. Moreover, (Sun et al., 2023) learns
semantic-agnostic features with the help of auxiliary tasks, while (Zhai
et al., 2023) conducted localization in a weakly-supervised manner,
requiring only binary image-level labels. Later on, the concept of lo-
calizing forgery has also been embraced in the digital facial forgery
community (Zhao et al., 2021; Chai et al., 2020; Cozzolino et al., 2018).
(Dang et al., 2020) employ the standard ℓ1 loss to localize regions con-
taining man-made artifacts. Similarly, (Zhao et al., 2021) utilizes binary
cross-entropy (BCE) to supervise the 4D volume in the self-consistency
branch of their model. Also, (Huang et al., 2022) leverages face pars-
ing as an auxiliary function to aid in localizing edited areas. Being
orthogonal to all these prior methods, we present passive and proactive
localization schemes in Chapter 5.3 and Chapter 5.4, respectively, which
can localize manipulations in both image editing and digital domains.

5.2 Problem Statement

The RED initiative focuses on the reverse engineering or deduction of
crucial information related to deception. Aside from the model parsing,
this research paradigm also contains manipulation localization, identify-
ing specific regions tampered with in attack samples. The information
from these identified regions can be employed to reverse engineer crucial

5.3. Passive Scheme Manipulation Localization 67

Forgery

Full-synthesized

Diffusion GAN

Cond. Uncond.

Editing

Fu. Sy.

Diffu.

Uncond.

DDIM

Pa. Ma

Editing

Cond..

Splicing

GAN

Cond.

STGAN

Fu. Sy.

Diffu.

Uncond.

DDPM

Level 1

Level 2

Level 3

Level 4

Partial-
Manipulated

DDPMDDIM

Fu. Sy. v.s Pa Ma.

Diffu. v.s. GAN v.s. Editing …

Cond. Diffu. v.s Uncond. Diffu ...

Real v.s DDPM v.s. DDIM…

Level 1

Level 2

Level 3

Level 4
Model

Real

ForgeryPa. Ma

Figure 5.1: (a) We represent the forgery attribute of each manipulated image
with multiple labels, at different levels. (b) For an input image, we encourage the
algorithm to classify its fine-grained forgery attributes at different levels, i.e. a 2-way
classification (fully synthesized or partially manipulated) on level 1. (c) We perform
the fine-grained classification via the hierarchical nature of different forgery attributes,
where each depth l node’s classification probability is conditioned on classification
probabilities of neighbor nodes at depth (l − 1). [Key: Fu. Sy.: Fully Synthesized;
Pa. Ma.: Partially manipulated; Diff.: Diffusion model; Cond.: Conditional; Uncond.:
Unconditional].

details about the malicious manipulation method.
More formally, given an image X ∈ RW×H×3, the proposed manip-

ulation localization method needs to localize the manipulation region
at the pixel level, performing binary segmentation and outputting a
binary mask M ∈ RW×H , where the Mij indicates if the ij-th pixel has
been manipulated or not. In addition, leveraging the predicted M is a
common practice to enhance the forgery detection task, in which the
manipulation localization method maps X to a binary variable y that
decides whether X has been forged or is pristine.

5.3 Passive Scheme Manipulation Localization

Developing a unified manipulation localization algorithm for both image
editing and digital domains presents a significant challenge due to the
substantial differences in images generated by various forgery methods,
which exhibit diverse attributes. As depicted in Fig. 5.1a, these forgery
attributes can range from indicating whether a forged image is entirely
synthesized or partially manipulated, to discerning the specific forgery
method used, such as a diffusion model generating images from Gaussian
noise (Ho et al., 2020) or an image editing process employing techniques
like Poisson editing (Pérez et al., 2003). To address this issue, we adopt
a multi-label approach to represent the forgery attributes of each image

68 Manipulation Localization of Generated Images

at different levels. Subsequently, we introduce a hierarchical fine-grained
formulation for IFDL, demanding the algorithm to classify the fine-
grained forgery attributes of each image across various levels, leveraging
the inherent hierarchical structure of different forgery attributes. After
that, a novel framework, termed Hierarchical Fine-grained Network, is
proposed for image forgery detection and localization.

5.3.1 Hierarchical Fine-grained Formulation

Given an input image, our method conducts fine-grained forgery at-
tribute classification at various levels, as depicted in Fig. 5.1b. This
hierarchical approach proves advantageous for image-level forgery de-
tection, as the fine-grained classification learns a comprehensive IFDL
representation to differentiate individual forgery methods. Additionally,
for pixel-level localization, the features from fine-grained classification
serve as a valuable prior, enhancing the localization process.

In Fig. 5.1c, we exploit the hierarchical dependency between forgery
attributes in fine-grained classification. The classification probability of
each node is conditioned on the path from the root to that node. For
instance, the classification probability at a node representing DDPM is
conditioned on the classification probabilities of all nodes in the path
Forgery→ Fully Synthesis→Diffusion→Unconditional→DDPM. Our
approach differs from prior works (Wu et al., 2019; Marra et al., 2018;
Yu et al., 2019; Marra et al., 2019a) that assume a "flat" structure
where attributes are considered mutually exclusive. Predicting the en-
tire hierarchical path contributes to understanding forgery attributes
from coarse to fine, effectively capturing dependencies among individual
forgery attributes.

5.3.2 Hierarchical Fine-grained Network

We propose Hierarchical Fine-grained Network (HiFi-Net), as depicted
in Fig. 5.2. HiFi-Net has three components: multi-branch feature
extractor, localization module and detection module. Each branch of
the multi-branch extractor classifies images at one forgery attribute
level. The localization module generates the forgery mask with the help
of a deep-metric learning based objective. Finally, the classification

5.3. Passive Scheme Manipulation Localization 69

Color
Block

Frequency
Block C

on
ca
t

Localization
Module

Conv
Pconv
Transition layer

Feature
map

Image

M̂

Real v.s.
Level 4

Forgery Attributes

Level 3
Forgery Attributes

Level 2
Forgery Attributes

Level 1
Forgery Attributes

Figure 5.2: Given the input image, we first leverage color and frequency blocks
to extract features. The multi-branch feature extractor () learns feature maps of
different resolutions, for the fine-grained classification at different levels. The local-
ization module generates the forgery mask, M̂, to identify the manipulation region.
After that, we leverage the classification module () for fine-grained classifications
at different levels.

module performs the forgery classification, further helping learn IFDL
representations.

Multi-branch feature extractor

First, we extract features from the given input image using both color
and frequency blocks. The frequency block applies a Laplacian of Gaus-
sian (LoG) (Burt and Adelson, 1987) onto the CNN feature map. This
architecture design is similar to the method in (Masi et al., 2020), which
exploits image generation artifacts that can exist in both RGB and
frequency domain (Wang et al., 2022; Dong et al., 2022; Wang et al.,
2020b; Zhang et al., 2019b). Subsequently, we propose a multi-branch
feature extractor, and whose branch is denoted as θb with b ∈ {1 . . . 4}.
Each θb generates a feature map of a specific resolution, facilitating
fine-grained classification at the corresponding level. For example, for
the finest level (i.e. identifying the individual forgery methods), one
needs to model contents at all spatial locations, which requires high-
resolution feature map. Conversely, low-resolution feature maps suffice
for coarse-level (i.e. binary) classification.

Additionally, we note that different forgery methods generate ma-
nipulated areas with distinct patterns. e.g., deepfake methods (Rossler
et al., 2019; Li et al., 2020a) manipulate the whole inner part of the face,

70 Manipulation Localization of Generated Images

whereas STGAN (Liu et al., 2019a) changes sparse facial attributes
such as mouth and eyes. Therefore, we position the localization module
at the end of the highest-resolution branch of the extractor, specifically
the branch responsible for classifying specific forgery methods. This
design ensures that features obtained for fine-grained classification serve
as a prior for localization. Such a configuration is crucial for effectively
localizing manipulated regions in images manipulated using both CNNs
and traditional image editing methods.

Localization module

The model contains a localization module that is optimized to match the
ground-truth binary mask M. The localization module maps feature out-
put from the highest-resolution branch (θ4), denoted as F ∈ R512×W×H ,
to the mask M̂ to localize the forgery. To model the dependency and
interactions of pixels on the large spatial area, the localization mod-
ule employs the self-attention mechanism (Zhang et al., 2019a; Wang
et al., 2018). As shown in the localization module architecture in the
Fig. 5.3a.

We employ 1 × 1 convolution to form g, ϕ and ψ, which convert
input feature F into Fg = g(F), Fϕ = ϕ(F) and Fψ = ψ(F). Given Fϕ

and Fθ, we compute the spatial attention matrix As = softmax(FT
ϕFθ).

We then use this transformation As to map Fg into a global feature
map F′ = AsFg ∈ R512×W×H .

Following the approach in (Masi et al., 2020), we employ a metric
learning objective function for localization, intending to create a wider
margin between genuine and manipulated pixels. This design aims to en-
hance generalization across diverse manipulation domains by improving
separation and adaptability to previously unseen domain data. Specifi-
cally, we transform Fimg into a binary mask M ∈ RW×H that indicates
the likelihood of being manipulated at each spatial locations. Unlike
the competitive approach (Wu et al., 2019), which utilizes softmax
regression as the classifier, our method takes a different approach. We
first extract features for each pixel and subsequently characterize the
geometric relationships among these acquired features using a radial
decision boundary within a hyper-sphere. To achieve this, we compute

5.3. Passive Scheme Manipulation Localization 71

F

1024 × W
× H

ψ(F)

512 × W
× H

ϕ(F)

512 × W
× H

g(F
)

512 × W
× H

transpose

softmax

F
′

512 × W
× H

M

1 × W
× H

(a) (b)

Figure 5.3: (a). The localization module adopts the self-attention mechanism to
transfer the feature map F to the localization mask M. (b). The classification
probability output from branch θb depends on the predicted probability at branch
θb−1, following the definition of the hierarchical forgery attributes tree.

a reference center, denoted as c ∈ RD, by averaging features from all
pixels in the training set’s real images, where D = 18.

Lloc = 1
HW

H∑
i

W∑
j

L
(
F′
ij ,Mij ; c, τ

)
, (5.1)

where:
L =

{∥∥F′
ij − c

∥∥
2 if Mij real

max
(
0, τ −

∥∥F′
ij − c

∥∥
2

)
if Mij forged.

Here τ is a pre-defined margin. The first term in L enhances the
compactness of features for real pixels, while the second term enforces
a margin τ to ensure that the distribution of forged pixels is separated
from real pixels. It’s important to note two distinctions from previous
approaches (Ruff et al., 2018; Masi et al., 2020): 1) we use the second
term in L for enforcing separation, unlike (Ruff et al., 2018); 2) compared
to (Masi et al., 2020), which operates at the image level with two margins,
we tackle the more challenging pixel-level learning with a single margin,
reducing the number of hyperparameters for improved simplicity.

Classification module

We aim to capture the hierarchical dependencies among various forgery
attributes. Let us consider an input image X. Denoting the output
logits and predicted probability of branch θb as θb(X) and p(yb|X),
respectively, we can express this as follows:

72 Manipulation Localization of Generated Images

p(yb|X) .= softmax
(
θb(X) ⊙ (1 + p(yb−1|X))

)
(5.2)

Before computing the probability p(yb|X) at branch θb, we scale logits
θb(X) based on the previous branch probability p(yb−1|X). Then, we
enforce the algorithm to learn hierarchical dependency. Specifically,
in Eq. (5.2), we repeat the probability of the coarse level b − 1 for
all the logits output by branch at level b, following the hierarchical
structure. Fig. 5.3b shows that the logits associated to predicting DDPM
or DDIM are multiplied by probability for the image to be Unconditional
(Diffusion) in the last level, based on the hierarchical tree structure.

5.3.3 Training and Inference

During training, each branch is optimized for classification at its corre-
sponding level. We employ four classification losses, denoted as L1cls,
L2cls, L3cls, and L4cls for the four branches. Specifically, at branch b,
Lbcls represents the cross-entropy between p(yb|X) and the ground truth
categorical label ŷb. The entire architecture is trained end-to-end, with
different learning rates assigned to each layer. The detailed objective
function is as follows:

Ltot =
{
λLloc + L1

cls + L2
cls + L3

cls + L4
cls if X is forged

λLloc + L4
cls if X is real

where X is the input image. When the input image is labeled as “real”,
we only apply the last branch (θ4) loss function, otherwise we use all
the branches. λ is the hyper-parameter that keeps Lloc on a reasonable
magnitude.

In the inference, HiFi-Net generates the forgery mask from the lo-
calization module, and predicts forgery attributes at different levels. We
use the output probabilities at level 4 for forgery attribute classification.
For binary “forged vs. real” classification, we predict as forged if the
highest probability falls in any manipulation method at level 4.

5.3.4 Experimental Results

In this chapter, we present the experimental results of our proposed
method for localizing manipulation in image editing and digital domains,

5.3. Passive Scheme Manipulation Localization 73

Localization Col. Cov. NI.16 CAS. IM20 Avg.
Metric: AUC(%) – Pre-trained

ManT. ((Wu et al., 2019)) 82.4 81.9 79.5 81.7 74.8 80.0
SPAN ((Hu et al., 2020)) 93.6 92.2 84.0 79.7 75.0 84.9
PSCC ((Liu et al., 2022)) 98.2 84.7 85.5 82.9 80.6 86.3

Ob.Fo. ((Wang et al., 2022)) 95.5 92.8 87.2 84.3 82.1 88.3
Ours∗ 98.3 93.2 87.0 85.8 82.9 89.4
Ours 98.4 92.4 86.9 86.6 83.4 89.6

(a)

Localization Cov. CAS. NI.16 Avg.
Metric: AUC(%) / F1(%) – Fine-tuned

SPAN ((Hu et al., 2020)) 93.7/55.8 83.8/40.8 96.1/58.2 91.2/51.6
PSCC ((Liu et al., 2022)) 94.1/72.3 87.5/55.4 99.6/81.9 93.7/69.8

Ob.Fo. ((Wang et al., 2022)) 95.7/75.8 88.2/57.9 99.6/82.4 94.5/72.0
Ours 96.1/80.1 88.5/61.6 98.9/85.0 94.6/75.5

(b)
Detection AUC(%) F1(%)

ManT. ((Wu et al., 2019)) 59.9 56.7
SPAN ((Hu et al., 2020)) 67.3 63.8
PSCC ((Liu et al., 2022)) 99.5 97.1

Ob.Fo. ((Wang et al., 2022)) 99.7 97.3
Ours 99.5 97.4

(c)

Table 5.1: (a) Localization performance of the pre-train model. (b) Localization
performance of the fine-tuned model. (c) Detection performance on CASIA dataset.
All results of prior works are ported from (Wang et al., 2022). [Key: Best; Second
Best; Ours∗ uses the same pre-trained dataset as (Liu et al., 2022), and ours is
pre-trained on HiFi-IFDL].

respectively.

Image editing performance

Table 5.1 presents IFDL results for the image editing domain. The
evaluation is conducted on 5 datasets: Columbia (Ng et al., 2009), Cov-
erage (Wen et al., 2016), CASIA (Dong et al., 2013), NIST16 (NIST:
Nist nimble 2016 datasets. 2016), and IMD20 (Novozamsky et al., 2020).
Following the previous experimental setup of (Wu et al., 2019; Hu
et al., 2020; Liu et al., 2022; Dong et al., 2022; Wang et al., 2022), we
pre-train the model on our proposed HiFi-IFDL and then fine-tune

74 Manipulation Localization of Generated Images

Image

GT

PSCC

Ours

Figure 5.4: Qualitative results on different forged images. The first 6 columns are
from image editing methods whereas the last 3 columns are images generated by
Faceshifer (Li et al., 2020a) and STGAN (Liu et al., 2019a).

the pre-trained model on the NIST16, Coverage and CASIA. We also
report the performance of HiFi-Net pre-trained on the same dataset
as (Liu et al., 2022). Table 5.1a reports the pre-trained model perfor-
mance, in which our method achieves the best average performance.
The ObjectFormer (Wang et al., 2022) adopts the powerful transformer-
based architecture and solely specializes in forgery detection of the
image editing domain, nevertheless its performance are on-par with
ours. In the fine-tune stage, our method achieves the best performance
on average AUC and F1. Specifically, we only fall behind on NIST16,
where AUC tends to saturate. We also report the image-level forgery
detection results in Table 5.1c, achieving comparable results to Object-
Former (Wang et al., 2022). We show qualitative results in Fig. 5.4,
where the manipulated region identified by our method can capture
semantically meaningful object shape, such as the shapes of the tiger
and squirrel.

DFFD dataset performance

We evaluate our method on the Diverse Fake Face Dataset (DFFD) (Dang
et al., 2020), which contains forged images created via different facial
forgery methods, and real faces from FFHQ (Karras et al., 2019) and
CelebA (Liu et al., 2015). For a fair comparison, we follow the same
experiment setup and metrics: IoU and pixel-wise binary classification
accuracy (PBCA) for pixel-level localization, and AUC and PBCA
for image-level detection. Table 5.2 reports that our method obtains

5.4. Proactive Scheme Manipulation Localization 75

IoU (↑) / PBCA (↑) Real Fu. Syn. Par. Man.
Att. ((Dang et al., 2020)) −/0.998 0.847/0.847 0.401/0.786

Ours −/0.978 0.893/0.893 0.411/0.801
(a)

IINC (↓) / C.S. (↓) Real Fu. Syn. Par. Man.
Att. ((Dang et al., 2020)) 0.015/− 0.077/0.095 0.311/0.429

Ours 0.010/− 0.060/0.107 0.323/0.410
(b)

Table 5.2: The localization performance: (a) Metrics are IoU and PBCA, the higher
the better, (b) Metrics are IINC and Cosine Similarity, the lower the better. [Keys:
Fu. Syn.: Fully-synthesized; Par. Man.: Partially-manipulated]

competitive performance on detection and the best localization perfor-
mance on partial-manipulated images. Specifically, compared to Atten-
tion Xception (Dang et al., 2020), our method still achieves the more
accurate localization performance on Partial Manipulated and Fully
Synthesized images. For the localization performance on real images,
our performance is comparable with the Attention Xception (Dang
et al., 2020).

5.4 Proactive Scheme Manipulation Localization

The methods previously mentioned all employ a passive approach,
where the input image, regardless of whether it’s authentic or altered, is
analyzed without any preliminary modification for detection purposes.
On the other hand, a proactive strategy has been adopted in certain
computer vision tasks, which involves introducing specific signals into
the original image. For instance, earlier studies have incorporated a
predetermined template into real images.

Driven by the goal of enhancing the generalizability of manipu-
lation detection/localization and inspired by proactive approaches in
various tasks, we introduce a proactive strategy MaLP tailored for de-
tecting image manipulations and then localize the manipulation areas
using three different modules. The process is as follows: at the moment
of image capture, our system uses the encryption module to embed
a barely noticeable signal, referred to as a template, into the image,

76 Manipulation Localization of Generated Images

effectively encrypting it. Should this encrypted image subsequently
undergo manipulation via a Generative Model (GM), our algorithm
proficiently differentiates between the original encrypted image and
its altered counterpart by identifying the embedded template using a
detection module. Further, MaLP specifically focuses on learning and
optimizing a template. When this template is integrated into genuine
images, it significantly enhances the ability to localize manipulations,
should the images be altered subsequently using the localization module.
Ideally, this encryption mechanism could be integrated directly into
camera hardware, ensuring all captured images are protected immedi-
ately. Our methodology sets itself apart from other related proactive
endeavors (Ruiz et al., 2020; Yeh et al., 2020; Segalis and Galili, 2020;
Wang et al., 2021a) in various aspects, including its primary objective
(focused on detection rather than other tasks), the nature of template
learning (learnable as opposed to pre-defined), the diversity of templates,
and its capacity for generalization.

Developing a proactive approach for manipulation localization presents
several hurdles. Firstly, crafting a methodology to learn the template
in an unsupervised manner is a complex task. Secondly, generating
a fakeness map that matches the resolution of the input image poses
substantial computational challenges, particularly when determining the
authenticity of each individual pixel. Previous studies (Chai et al., 2020;
Dang et al., 2020) have attempted to address this by either reducing
the image resolution or employing a patch-based strategy, but these
methods often yield fakeness maps of lower accuracy and resolution.
Finally, it’s essential that the templates are versatile enough to accu-
rately localize alterations made by GMs that were not seen during the
training phase.

We will now discuss all the three modules of MaLP in details followed
by the experiemntal results for manipulation detection and localization.

5.4.1 Method Description

MaLP is divided into three main parts:

1. Encryption Module: This module is responsible for encrypting
real images to protect them.

5.4. Proactive Scheme Manipulation Localization 77

2. Localization Module: It uses a two-branch architecture to
estimate a ’fakeness map’. This map helps in identifying areas in
an image that might have been manipulated or altered.

3. Detection Module: This component focuses on recognizing
whether an image has been encrypted or tampered with. It does
this by restoring any hidden patterns in the image and using the
classifier from the localization module.

We will now describe each module in some detail.

Encryption module

In the method outlined by (Asnani et al., 2022), a learnable template,
chosen randomly from a set of templates, is applied to a real image.
The intensity with which this template is applied is regulated by a
hyperparameter, labeled as m. This regulation is crucial for ensuring the
original quality of the image remains largely unaffected. The encryption
process is summarised below:

T (IRj) = IRj +m× Si where i = Rand(1, 2, ..., n). (5.3)

We select the value of m as 30% for our framework.
The template set is refined with an emphasis on features such as

minimal magnitude, the orthogonality of the templates, and the inclusion
of high-frequency elements (Asnani et al., 2022). The properties are
applied as constraints as follows.

JT = λ1 ×
n∑
i=1

||Si||2 + λ2 ×
n∑

i,j=1
i ̸=j

CS(Si,Sj) + λ3 × ||L(F(S))||2, (5.4)

where CS is the cosine similarity, L is the low-pass filter, F is the
fourier transform, λ1, λ2, λ3 are weights for losses of low magnitude,
orthogonality and high-frequency content, respectively.

Localization module

In developing the localization module, two key attributes are prioritized:
an extensive receptive field for accurate fakeness map estimation, and

78 Manipulation Localization of Generated Images

Figure 5.5: The overview of MaLP. It includes three modules: encryption,
localization, and detection. We randomly select a template from the template set
and add it to the real image as encryption. The GM is used in inference mode to
manipulate the encrypted image. The detection module recovers the added template
for binary detection. The localization module uses a two-branch architecture to
estimate the fakeness map. Lastly, we apply the classifier to the fakeness map to
better distinguish them from each other. Best viewed in color.

high efficiency during inference. Networks with larger receptive fields
are capable of incorporating widely separated areas in the image to
enhance localization accuracy. However, the drawback is that larger
receptive fields usually result from deeper network architectures, which
can lead to reduced speed in the inference process.

In this design, we utilize a dual-branch structure, comprising a
shallow Convolutional Neural Network (CNN) and a Vision Transformer
(ViT). This architecture is visually represented in Fig. 5.5. The rationale
behind this approach is to use the shallow CNN branch to detect local
features within the image, while employing the deeper ViT branch
to grasp the global features. While the training phase involves both
branches to enhance template learning, only the shallow CNN branch
is used during inference for greater efficiency. Specifically, the shallow
CNN, with its 10 layers, is adept at inference tasks but is limited to
local feature detection due to its smaller receptive field. On the other
hand, the ViT transformer, through its self-attention mechanism across
image patches, excels at capturing global information and effectively
estimating the fakeness map, even in widely separated image regions.
Both networks are trained jointly.

5.4. Proactive Scheme Manipulation Localization 79

The fakeness map estimation relies on the ground-truth fakeness
map. In the case of fake images, our strategy involves elevating the
agreement between the predicted and ground-truth fakeness maps. This
is achieved by optimizing both the cosine similarity (CS) and the
structural similarity index (SS) between these two maps. On the other
hand, for encrypted images, the target fakeness map is ideally zero. To
guide the predicted map towards this goal for encrypted images, an
L2 loss, referenced in (Huang et al., 2022), is applied. Furthermore, to
amplify the distinction between the fakeness maps of fake and encrypted
images, we strive to minimize the cosine similarity between the predicted
map of encrypted images and MGT . The localization loss is defined as:

JL =

{
λ4 × ||EC/T (I)||22+ if I ∈ T (IR)

λ5 × CS(EC/T (I),MGT)
}{

λ6 × (1 − CS(EC/T (I),MGT))+ if I ∈ G(T (IR))

λ7 × (1 − SS(EC/T (I),MGT))
}
.

(5.5)

Finally, we use a classifier to use the predicted fakeness map as features
to output a binary decision of real and fake.

Detection module

We follow (Asnani et al., 2022) to recover the added template from the
encrypted images by maximizing the cosine similarity between S and
SR. However, we minimize the cosine similarity between (SR) and S
for manipulated images.

JR =
{
λ8 × (1 − CS(S,SR)) if x ∈ T (IR)
λ9 × (

∑n
i=1(CS(Si,SR))) if x ∈ G(T (IR)).

(5.6)

For using the fakeness maps, we use the following equation by applying
the binary cross entropy loss on the averaged logits as follows:

JC =λ10 × −
∑
j

{
yj .log

[C(Xj) + CS(SR,S)
2

]
−

(1 − yj).log
[
1 − C(Xj) + CS(SR,S)

2

]}
,

(5.7)

where yj is the class label, S and SR are the added and recovered
template respectively.

80 Manipulation Localization of Generated Images

Table 5.3: Manipulation localization comparison with prior works.

Localization DetectionMethod CS ↑ PSNR ↑ SSIM ↑ Accuracy ↑ EER ↓ AUC ↑
(Dang et al., 2020) 0.6230 6.214 0.2178 0.9975 0.0050 0.9975
(Huang et al., 2022) 0.8831 22.890 0.7876 0.9945 0.0077 0.9998

MaLP 0.9394 23.020 0.7312 0.9991 0.0072 1.0

Figure 5.6: Visualization of fakeness maps for faces and generic images showing
generalization across unseen attribute modifications and GMs: (a) real image, (b)
encrypted image, (c) manipulated image, (d) MGT , (e) predicted fakeness map for en-
crypted images, and (f) predicted fakeness map for manipulated images. The first col-
umn shows the manipulation of (seen GM, seen attribute modification) i.e.(STGAN,
bald). Following two columns show the manipulation of (seen GM, unseen attribute
modification) i.e.(STGAN, [bangs, pale skin]. The fourth and fifth columns show
manipulation of unseen GM, GauGAN for non-face images. The last column shows
manipulation by unseen GM, DRIT. We see that the fakeness map of manipulated
images is more bright and similar to MGT , while the real fakeness map is more close
to zero. We use the cmap as “pink" to better visualize the fakeness map. All face
images come from SiW-Mv2 data (Guo et al., 2022).

5.4. Proactive Scheme Manipulation Localization 81

Table 5.4: Comparison of localization performance across unseen GMs and attribute
modifications. We train on STGAN bald/smile attribute modification and test on
AttGAN/StyleGAN.

Cosine similarity ↑(AttGAN) Cosine similarity ↑ (StyleGAN)Method Bald Black Hair Eyeglasses Smile Age Gender
(Huang et al., 2022) 0.8141 0.6932 0.6950 0.6176 0.3141 0.6470

MaLP 0.8201 0.7940 0.8557 0.8159 0.8255 0.8016

5.4.2 Experiments

In our study, comparisons are drawn with the methodologies presented
in (Huang et al., 2022) and (Dang et al., 2020) concerning manipulation
localization, as detailed in Table 5.3. The MaLP model demonstrates
superior cosine similarity and maintains similar PSNR metrics for
localization when contrasted with (Huang et al., 2022). However, a
noticeable decrease in SSIM is observed. This decline might be linked
to the image quality degradation resulting from the application of
our template to real images prior to manipulation. Despite this, the
incorporation of the learned template effectively aids in pinpointing
manipulated areas, a fact corroborated by the cosine similarity figures,
though it adversely affects SSIM and PSNR values. The performance
in differentiating real from fake images is also evaluated. Our proactive
method shows significant superiority over passive approaches, achieving
a perfect score in AUC and near-perfect accuracy. Visual demonstrations
of fakeness maps for images altered by previously unseen GMs are
depicted in Fig. 5.6. Impressively, MaLP is proficient in accurately
generating fakeness maps for novel modifications and GMs across a
spectrum of datasets, including both facial and generic images.

Generalization across attributes

Adhering to the experimental framework established in (Huang et
al., 2022), we assess MaLP’s capabilities in dealing with unseen at-
tribute alterations. MaLP is trained using the STGAN, focusing on the
bald/smile attributes, and is subsequently evaluated on novel attribute
modifications utilizing unseen Generative Models (GMs) like AttGAN
and StyleGAN. The results, tabulated in Table 5.4, indicate MaLP’s
enhanced generalizability across various unseen attribute modifications.

82 Manipulation Localization of Generated Images

Figure 5.7: Benchmark for manipulation localization across 22 different unseen
GMs, showing cosine similarity between ground-truth and predicted fakeness maps.

It’s noteworthy that while AttGAN and STGAN share similar high-
level structures, StyleGAN does not. This discrepancy is reflected in
our findings, where a marked improvement in localization accuracy
is observed with StyleGAN as compared to AttGAN. This contrast
underscores a key limitation of passive methodologies, which tend to
underperform when the GM used for testing does not closely resemble
the GM employed during training, a challenge effectively addressed by
our MaLP framework.

Generalization across GMs

While (Huang et al., 2022) attempts to demonstrate generalizability
across different unseen Generative Models (GMs), its scope is con-
strained to GMs within the same domain as the dataset used during
training. In contrast, we introduce a benchmark designed to assess gen-
eralization in future manipulation localization studies, encompassing 22
diverse GMs spanning various domains. Our selection criteria for GMs
include public availability and the capability for partial manipulation.

Due to the absence of an open-source implementation for (Huang
et al., 2022), we employ a passive approach using a ResNet50 network,
as per (He et al., 2016), to approximate the fakeness map, serving as
our baseline for comparisons. Our approach is further benchmarked
against the methodologies of (Chai et al., 2020) and (Dang et al., 2020).
Notably, the fakeness maps generated by (Chai et al., 2020) and (Dang
et al., 2020) are at a resolution at least 5× lower than the input images,

5.5. Conclusion 83

owing to their patch-based approach. For an equitable comparison,
we upscale their predicted fakeness maps to match the resolution of
MGT . The comparative analysis of cosine similarity is presented in
Fig. 5.7. MaLP demonstrates superior performance over all baseline
models across nearly all GMs, validating the efficacy of the proactive
approach.

5.5 Conclusion

This chapter builds upon the advancements in model parsing to intro-
duce methods for the RED paradigm in the human-centric perspective —
manipulation localization. The motivation for this research topic stems
from the increased accessibility of image manipulation tools and the
need to detect and precisely locate manipulated regions in images,
especially facial images on social media. Specifically, the problem state-
ment revolves around developing a manipulation localization technique
that performs binary segmentation on images to identify and localize
manipulated regions, enhancing the ability to detect and understand
image forgeries. We present both passive and proactive schemes for the
manipulation localization algorithm, addressing human-centric attacks
in both image editing and digital domains. We show in experiments that
our two proposed methods are much more generalizable and achieve
SoTA performance compared to the prior works. For the future manip-
ulation localization research, we believe it is meaningful to explore the
manipulation produced by recent prevalent image editing tools based on
the diffusion model, which empirically demonstrates the unprecedented
image generation quality.

6
Conclusion and Discussion

In our preceding chapters, we have extensively explored the realm of Re-
verse Engineering of Deceptions (RED) in the context of both machine-
centric and human-centric attacks. With regard to machine-centric
attacks, our efforts have successfully reverse-engineered pixel-level per-
turbations, adversarial saliency maps, and victim model information
from adversarial examples. In the domain of human-centric attacks, we
have accomplished the reverse engineering of generative model infor-
mation and manipulation locations in generated images. However, the
concept of RED extends far beyond these accomplishments.

In terms of machine-centric attacks, poisoning attacks, which target
the training process of machine learning models, represent a significant
and parallel track to adversarial attacks. These attacks aim to degrade
model performance or implant backdoors, known as backdoor attacks
(Gu et al., 2017; Chen et al., 2017). The challenge of reverse engineering
such backdoors also falls within the scope of RED. Numerous studies
have focused on identifying the backdoor trigger location, the trigger
pattern, and the associated target label (Wang et al., 2019; Wang et al.,
2020a; Chen et al., 2022).

In addition, model inversion attacks (Fredrikson et al., 2015) and

84

85

membership inference attacks (Shokri et al., 2017) also serve as conduits
for RED. Concerning human-centric attacks, recent advancements in
model inversion techniques have concentrated on extracting training
samples through generative models, including large language models
(Nasr et al., 2023) and diffusion models (Carlini et al., 2023). Moreover,
membership inference attacks, which determine whether a generated
sample is part of the training set, have garnered interest within the
community. These attacks can be viewed as another branch of RED
(Hu and Pang, 2023; Fu et al., 2023).

One important aspect of our research is the study of the model
parsing ability of generative models (GMs), aiming to infer the hy-
perparameters behind image synthesis in these models. This approach
is crucial in addressing human-centric attacks, where GMs, despite
their ability to generate visually compelling images, also pose risks of
misinformation and threats to the trustworthiness of social media.

Another significant aspect of our research is the focus on manipu-
lation localization, a key area in computer vision and correlates with
the human-centric attack in the RED paradigm. We aim to identify
tampered regions in images to deduce crucial information about the
manipulation method used. Prior research predominantly concentrated
on manipulation in either the image editing or digital domain (Zhao
et al., 2021; Chai et al., 2020; Cozzolino et al., 2018; Dang et al., 2020).
However, in contrast to these previous efforts, we introduce passive
and proactive algorithms for manipulation localization that are capa-
ble of handling both domains simultaneously, demonstrating better
generalization across unknown attacks.

With the rapid advancement of generative AI technologies like
ChatGPT and Bard, coupled with increasing concerns over security
risks posed by potential adversarial attacks, the importance of RED
remains paramount. We believe that a comprehensive understanding of
RED is crucial for the development of safer AI systems, offering insights
into protective measures against emerging threats in this dynamic field.

References

Andriushchenko, M., F. Croce, N. Flammarion, and M. Hein. (2020).
“Square attack: a query-efficient black-box adversarial attack via
random search”. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXIII. Springer. 484–501.

Asnani, V., X. Yin, T. Hassner, S. Liu, and X. Liu. (2022). “Proactive
Image Manipulation Detection”. In: CVPR.

Asnani, V., X. Yin, T. Hassner, and X. Liu. (2023a). “Malp: Manipula-
tion localization using a proactive scheme”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 12343–12352.

Asnani, V., X. Yin, T. Hassner, and X. Liu. (2023b). “Reverse engi-
neering of generative models: Inferring model hyperparameters from
generated images”. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Athalye, A., L. Engstrom, A. Ilyas, and K. Kwok. (2018). “Synthesizing
Robust Adversarial Examples”. In: International Conference on
Machine Learning (ICML).

Batina, L., S. Bhasin, D. Jap, and S. Picek. (2019). “{CSI}{NN}:
Reverse engineering of neural network architectures through elec-
tromagnetic side channel”. In: 28th USENIX Security Symposium
(USENIX Security 19). 515–532.

86

References 87

Bayar, B. and M. C. Stamm. (2018). “Constrained convolutional neural
networks: A new approach towards general purpose image manipu-
lation detection”. IEEE Transactions on Information Forensics and
Security. 13(11): 2691–2706.

Boopathy, A., S. Liu, G. Zhang, P.-Y. Chen, S. Chang, and L. Daniel.
(2020). “Visual Interpretability Alone Helps Adversarial Robust-
ness”.

Boroumand, M., M. Chen, and J. Fridrich. (2018). “Deep residual
network for steganalysis of digital images”. IEEE Transactions on
Information Forensics and Security. 14(5): 1181–1193.

Burgess, C. P., I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner. (2017). “Understanding disentangling in β-VAE”.
In: NeurIPS.

Burt, P. J. and E. H. Adelson. (1987). “The Laplacian pyramid as a
compact image code”. In: Readings in computer vision. Elsevier.
671–679.

Carlini, N. and D. Wagner. (2017). “Towards evaluating the robustness
of neural networks”. In: IEEE Symposium on Security and Privacy
(S&P). IEEE.

Carlini, N., J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer,
B. Balle, D. Ippolito, and E. Wallace. (2023). “Extracting training
data from diffusion models”. In: 32nd USENIX Security Symposium
(USENIX Security 23). 5253–5270.

Chai, L., D. Bau, S.-N. Lim, and P. Isola. (2020). “What makes fake
images detectable? Understanding properties that generalize”. In:
ECCV.

Chen, D., Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. (2020). “Measuring
and relieving the over-smoothing problem for graph neural networks
from the topological view”. In: Proceedings of the AAAI conference
on artificial intelligence. Vol. 34. No. 04. 3438–3445.

Chen, R. T. Q., X. Li, R. Grosse, and D. Duvenaud. (2018). “Isolat-
ing Sources of Disentanglement in Variational Autoencoders”. In:
NeurIPS.

88 References

Chen, T., Z. Zhang, Y. Zhang, S. Chang, S. Liu, and Z. Wang. (2022).
“Quarantine: Sparsity can uncover the trojan attack trigger for free”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 598–609.

Chen, X., C. Dong, J. Ji, J. Cao, and X. Li. (2021). “Image manipulation
detection by multi-view multi-scale supervision”. In: ICCV.

Chen, X., C. Liu, B. Li, K. Lu, and D. Song. (2017). “Targeted backdoor
attacks on deep learning systems using data poisoning”. arXiv
preprint arXiv:1712.05526.

Chen, Z.-M., X.-S. Wei, P. Wang, and Y. Guo. (2019). “Multi-label
image recognition with graph convolutional networks”. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition. 5177–5186.

Choi, Y., M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. (2018).
“StarGAN: Unified generative adversarial networks for multi-domain
image-to-image translation”. In: CVPR.

Cozzolino, D., J. Thies, A. Rössler, C. Riess, M. Nießner, and L. Verdo-
liva. (2018). “Forensictransfer: Weakly-supervised domain adapta-
tion for forgery detection”. arXiv preprint arXiv:1812.02510.

Creswell, A., T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath. (2018). “Generative adversarial networks: An
overview”. IEEE signal processing magazine. 35(1): 53–65.

Croce, F. and M. Hein. (2020). “Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks”. In:
International Conference on Machine Learning (ICML). PMLR.

Dang, H., F. Liu, J. Stehouwer, X. Liu, and A. K. Jain. (2020). “On
the detection of digital face manipulation”. In: CVPR.

DARPA. (2021). “Reverse Engineering of Deceptions”. https://www.
darpa.mil/program/reverse-engineering-of-deceptions.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. (2009).
“ImageNet: A large-scale hierarchical image database”. In: CVPR.

Deng, L. (2012). “The MNIST database of handwritten digit images
for machine learning research [best of the web]”. Signal Processing
Magazine. 29(6): 141–142.

Dhariwal, P. and A. Nichol. (2021). “Diffusion models beat gans on
image synthesis”. In:

https://www.darpa.mil/program/reverse-engineering-of-deceptions
https://www.darpa.mil/program/reverse-engineering-of-deceptions

References 89

Ding, H., H. Zhang, J. Liu, J. Li, Z. Feng, and X. Jiang. (2021). “Inter-
action via bi-directional graph of semantic region affinity for scene
parsing”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 15848–15858.

Dong, C., X. Chen, R. Hu, J. Cao, and X. Li. (2022). “MVSS-Net: Multi-
View Multi-Scale Supervised Networks for Image Manipulation
Detection”. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Dong, J., W. Wang, and T. Tan. (2013). “Casia image tampering
detection evaluation database”. In: 2013 IEEE China Summit and
International Conference on Signal and Information Processing.
IEEE. 422–426.

Durall, R., M. Keuper, and J. Keuper. (2020). “Watch your up-convolution:
Cnn based generative deep neural networks are failing to reproduce
spectral distributions”. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 7890–7899.

Fan, L., S. Liu, P.-Y. Chen, G. Zhang, and C. Gan. (2021). “When Does
Contrastive Learning Preserve Adversarial Robustness from Pre-
training to Finetuning?” Advances in Neural Information Processing
Systems. 34.

Fan, W., Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. (2019).
“Graph neural networks for social recommendation”. In: The world
wide web conference. 417–426.

Frankle, J. and M. Carbin. (2018). “The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks”. arXiv preprint arXiv:1803.03635.

Fredrikson, M., S. Jha, and T. Ristenpart. (2015). “Model inversion
attacks that exploit confidence information and basic countermea-
sures”. In: Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security. 1322–1333.

Fu, W., H. Wang, C. Gao, G. Liu, Y. Li, and T. Jiang. (2023). “Practical
Membership Inference Attacks against Fine-tuned Large Language
Models via Self-prompt Calibration”. arXiv preprint arXiv:2311.06062.

Goebel, M., J. Bunk, S. Chattopadhyay, L. Nataraj, S. Chandrasekaran,
and B. Manjunath. (2021). “Attribution of gradient based adver-
sarial attacks for reverse engineering of deceptions”. arXiv preprint
arXiv:2103.11002.

90 References

Gong, Y., Y. Yao, Y. Li, Y. Zhang, X. Liu, X. Lin, and S. Liu. (2022).
“Reverse engineering of imperceptible adversarial image perturba-
tions”. arXiv preprint arXiv:2203.14145.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio. (2014a). “Generative adversarial
nets”. In: NeurIPS.

Goodfellow, I. J., J. Shlens, and C. Szegedy. (2014b). “Explaining and
harnessing adversarial examples”. arXiv preprint arXiv:1412.6572.

Gragnaniello, D., D. Cozzolino, F. Marra, G. Poggi, and L. Verdoliva.
(2021). “Are GAN generated images easy to detect? A critical anal-
ysis of the state-of-the-art”. In: 2021 IEEE international conference
on multimedia and expo (ICME). IEEE. 1–6.

Gu, T., B. Dolan-Gavitt, and S. Garg. (2017). “Badnets: Identifying
vulnerabilities in the machine learning model supply chain”. arXiv
preprint arXiv:1708.06733.

Guarnera, L., O. Giudice, and S. Battiato. (2020). “DeepFake Detection
by Analyzing Convolutional Traces”. In: CVPR Workshops.

Guo, X., V. Asnani, S. Liu, and X. Liu. (2023a). “Tracing Hyperparam-
eter Dependencies for Model Parsing via Learnable Graph Pooling
Network”. arXiv preprint arXiv:2312.02224.

Guo, X., X. Liu, Z. Ren, S. Grosz, I. Masi, and X. Liu. (2023b). “Hierar-
chical Fine-Grained Image Forgery Detection and Localization”. In:
In Proceeding of IEEE Computer Vision and Pattern Recognition.

Guo, X., Y. Liu, A. Jain, and X. Liu. (2022). “Multi-domain Learning
for Updating Face Anti-spoofing Models”. In: ECCV.

Guo, Z., Y. Zhang, and W. Lu. (2019). “Attention Guided Graph
Convolutional Networks for Relation Extraction”. In: Proceedings
of the 57th Annual Meeting of the Association for Computational
Linguistics. 241–251.

Guo, Z., K. Han, Y. Ge, W. Ji, and Y. Li. (2023c). “Scalable Attribution
of Adversarial Attacks via Multi-Task Learning”. arXiv preprint
arXiv:2302.14059.

Han, S., J. Pool, J. Tran, and W. Dally. (2015). “Learning both weights
and connections for efficient neural network”. Advances in neural
information processing systems. 28.

References 91

He, K., X. Zhang, S. Ren, and J. Sun. (2016). “Deep residual learning
for image recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition.

Heath, V. (2019). “From a Sleazy Reddit Post to a National Security
Threat: A Closer Look at the Deepfake Discourse”. In: Disinfor-
mation and Digital Democracies in the 21st Century. The NATO
Association of Canada.

Ho, J., A. Jain, and P. Abbeel. (2020). “Denoising diffusion probabilistic
models”. Advances in Neural Information Processing Systems. 33:
6840–6851.

Hsu, I., X. Guo, P. Natarajan, N. Peng, et al. (2021). “Discourse-level
relation extraction via graph pooling”. In: AAAI DLG Wrokshop.

Hu, H. and J. Pang. (2023). “Membership inference of diffusion models”.
arXiv preprint arXiv:2301.09956.

Hu, X., Z. Zhang, Z. Jiang, S. Chaudhuri, Z. Yang, and R. Nevatia.
(2020). “SPAN: spatial pyramid attention network for image manip-
ulation localization”. In: European Conference on Computer Vision.
Springer. 312–328.

Hua, W., Z. Zhang, and G. E. Suh. (2018). “Reverse engineering convo-
lutional neural networks through side-channel information leaks”.
In: Proceedings of the 55th Annual Design Automation Conference.
1–6.

Huang, Y., F. Juefei-Xu, Q. Guo, Y. Liu, and G. Pu. (2022). “FakeLo-
cator: Robust localization of GAN-based face manipulations”. IEEE
Transactions on Information Forensics and Security. 17: 2657–2672.

Ilyas, A., L. Engstrom, A. Athalye, and J. Lin. (2018). “Black-box
Adversarial Attacks with Limited Queries and Information”. arXiv
preprint arXiv:1804.08598.

Jabbar, A., X. Li, and B. Omar. (2020). “A Survey on Generative
Adversarial Networks: Variants, Applications, and Training”. arXiv
preprint arXiv:2006.05132.

Ji, K., F. Chen, X. Guo, Y. Xu, J. Wang, and J. Chen. (2023). “Uncertainty-
guided Learning for Improving Image Manipulation Detection”. In:
Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 22456–22465.

92 References

Jourabloo, A., Y. Liu, and X. Liu. (2018). “Face de-spoofing: Anti-
spoofing via noise modeling”. In: ECCV.

Karras, T., T. Aila, S. Laine, and J. Lehtinen. (2018). “Progressive
growing of GANs for improved quality, stability, and variation”. In:
ICLR.

Karras, T., S. Laine, and T. Aila. (2019). “A style-based generator
architecture for generative adversarial networks”. In: CVPR. 4401–
4410.

Kingma, D. P. and M. Welling. (2014). “Auto-Encoding Variational
Bayes”. In: ICLR.

Kingma, D. P. and J. Ba. (2015). “Adam: A Method for Stochastic Opti-
mization”. In: International Conference on Learning Representations
(ICLR).

Kipf, T. N. and M. Welling. (2016). “Semi-supervised classification with
graph convolutional networks”. arXiv preprint arXiv:1609.02907.

Krizhevsky, A., G. Hinton, et al. (2009). “Learning multiple layers of
features from tiny images”.

LeCun, Y., Y. Bengio, and G. Hinton. (2015). “Deep learning”. nature.
521(7553): 436–444.

Li, G., M. Muller, A. Thabet, and B. Ghanem. (2019). “Deepgcns:
Can gcns go as deep as cnns?” In: Proceedings of the IEEE/CVF
international conference on computer vision. 9267–9276.

Li, L., J. Bao, H. Yang, D. Chen, and F. Wen. (2020a). “Faceshifter:
Towards high fidelity and occlusion aware face swapping”. CVPR.

Li, Q., Y. Guo, and H. Chen. (2020b). “Practical no-box adversarial
attacks against DNNs”. Advances in Neural Information Processing
Systems (NeurIPS).

Liao, F., M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu. (2018).
“Defense against Adversarial Attacks Using High-Level Representa-
tion Guided Denoiser”. arXiv:1712.02976 [cs]. May. (Accessed on
05/26/2021).

Liu, C., B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy. (2018). “Progressive neural
architecture search”. In: ECCV.

References 93

Liu, M., Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo, and S. Wen. (2019a).
“Stgan: A unified selective transfer network for arbitrary image
attribute editing”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 3673–3682.

Liu, S., P.-Y. Chen, X. Chen, and M. Hong. (2019b). “signSGD via
Zeroth-Order Oracle”. In: International Conference on Learning
Representations.

Liu, S., P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K.
Varshney. (2020). “A primer on zeroth-order optimization in signal
processing and machine learning: Principals, recent advances, and
applications”. IEEE Signal Processing Magazine. 37(5): 43–54.

Liu, X., Y. Liu, J. Chen, and X. Liu. (2022). “PSCC-Net: Progressive
spatio-channel correlation network for image manipulation detection
and localization”. IEEE Transactions on Circuits and Systems for
Video Technology.

Liu, Z., P. Luo, X. Wang, and X. Tang. (2015). “Deep learning face
attributes in the wild”. In: Proceedings of the IEEE international
conference on computer vision. 3730–3738.

Luo, Y., X. Boix, G. Roig, T. Poggio, and Q. Zhao. (2015). “Foveation-
based mechanisms alleviate adversarial examples”. arXiv preprint
arXiv:1511.06292.

Madry, A., A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. (2017).
“Towards deep learning models resistant to adversarial attacks”.
arXiv preprint arXiv:1706.06083.

Maini, P., X. Chen, B. Li, and D. Song. (2021). “Perturbation Type Cat-
egorization for Multiple ℓ_p Bounded Adversarial Robustness”.
url: https://openreview.net/forum?id=Oe2XI-Aft-k.

Marra, F., D. Gragnaniello, D. Cozzolino, and L. Verdoliva. (2018).
“Detection of gan-generated fake images over social networks”. In:
2018 IEEE conference on multimedia information processing and
retrieval (MIPR). IEEE. 384–389.

Marra, F., D. Gragnaniello, L. Verdoliva, and G. Poggi. (2019a). “Do
gans leave artificial fingerprints?” In: IEEE conference on multimedia
information processing and retrieval (MIPR).

https://openreview.net/forum?id=Oe2XI-Aft-k

94 References

Marra, F., C. Saltori, G. Boato, and L. Verdoliva. (2019b). “Incremen-
tal learning for the detection and classification of GAN-generated
images”. In: WIFS.

Masi, I., A. Killekar, R. M. Mascarenhas, S. P. Gurudatt, and W.
AbdAlmageed. (2020). “Two-branch recurrent network for isolating
deepfakes in videos”. In: ECCV. Springer.

Mayer, O. and M. C. Stamm. (2018). “Learned forensic source similarity
for unknown camera models”. In: ICASSP.

McCloskey, S. and M. Albright. (2019). “Detecting GAN-generated
imagery using saturation cues”. In: ICIP.

Min, Y., F. Wenkel, and G. Wolf. (2020). “Scattering gcn: Overcom-
ing oversmoothness in graph convolutional networks”. Advances in
neural information processing systems. 33: 14498–14508.

Moayeri, M. and S. Feizi. (2021). “Sample efficient detection and classi-
fication of adversarial attacks via self-supervised embeddings”. In:
Proceedings of the IEEE/CVF international conference on computer
vision. 7677–7686.

Nasr, M., N. Carlini, J. Hayase, M. Jagielski, A. F. Cooper, D. Ippolito,
C. A. Choquette-Choo, E. Wallace, F. Tramèr, and K. Lee. (2023).
“Scalable Extraction of Training Data from (Production) Language
Models”. arXiv preprint arXiv:2311.17035.

Ng, T.-T., J. Hsu, and S.-F. Chang. (2009). “Columbia image splicing
detection evaluation dataset”. DVMM lab. Columbia Univ CalPhotos
Digit Libr.

Nguyen, B. X., B. D. Nguyen, T. Do, E. Tjiputra, Q. D. Tran, and
A. Nguyen. (2021). “Graph-based person signature for person re-
identifications”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 3492–3501.

Nicholson, D. A. and V. Emanuele. (2023). “Reverse engineering adver-
sarial attacks with fingerprints from adversarial examples”. arXiv
preprint arXiv:2301.13869.

Nie, W., B. Guo, Y. Huang, C. Xiao, A. Vahdat, and A. Anandkumar.
(2022). “Diffusion models for adversarial purification”. arXiv preprint
arXiv:2205.07460.

References 95

Nirkin, Y., L. Wolf, Y. Keller, and T. Hassner. (2020). “DeepFake
detection based on the discrepancy between the face and its context”.
arXiv preprint arXiv:2008.12262.

NIST: Nist nimble 2016 datasets. (2016). url: https://www.nist.gov/
itl/iad/mig/,.

Niu, Z., Z. Chen, L. Li, Y. Yang, B. Li, and J. Yi. (2020). “On
the Limitations of Denoising Strategies as Adversarial Defenses”.
arXiv:2012.09384 [cs].

Novozamsky, A., B. Mahdian, and S. Saic. (2020). “IMD2020: A Large-
Scale Annotated Dataset Tailored for Detecting Manipulated Im-
ages”. In: 2020 IEEE Winter Applications of Computer Vision
Workshops (WACVW). 71–80.

Oh, S. J., B. Schiele, and M. Fritz. (2019). “Towards reverse-engineering
black-box neural networks”. Explainable AI: Interpreting, Explaining
and Visualizing Deep Learning: 121–144.

Ojha, U., Y. Li, and Y. J. Lee. (2023). “Towards universal fake image
detectors that generalize across generative models”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 24480–24489.

Pang, R., X. Zhang, S. Ji, X. Luo, and T. Wang. (2020). “AdvMind: In-
ferring Adversary Intent of Black-Box Attacks”. In: the International
Conference on Knowledge Discovery & Data Mining (KDD).

Pérez, P., M. Gangnet, and A. Blake. (2003). “Poisson image editing”.
In: ACM SIGGRAPH 2003 Papers. 313–318.

Pham, H., M. Guan, B. Zoph, Q. Le, and J. Dean. (2018). “Efficient
neural architecture search via parameters sharing”. In: ICML.

Rossler, A., D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M.
Nießner. (2019). “Faceforensics++: Learning to detect manipulated
facial images”. In: Proceedings of the IEEE/CVF international con-
ference on computer vision. 1–11.

Ruff, L., R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A.
Binder, E. Müller, and M. Kloft. (2018). “Deep one-class classifica-
tion”. In: ICML. 4393–4402.

Ruiz, N., S. A. Bargal, and S. Sclaroff. (2020). “Disrupting deepfakes:
Adversarial attacks against conditional image translation networks
and facial manipulation systems”. In: ECCV.

https://www.nist.gov/itl/iad/mig/,
https://www.nist.gov/itl/iad/mig/,

96 References

Sabour, S., Y. Cao, F. Faghri, and D. J. Fleet. (2015). “Adversarial ma-
nipulation of deep representations”. arXiv preprint arXiv:1511.05122.

Salman, H., M. Sun, G. Yang, A. Kapoor, and J. Z. Kolter. (2020).
“Denoised smoothing: A provable defense for pretrained classifiers”.
In: Advances in Neural Information Processing Systems (NeurIPS).

Schwarz, K., Y. Liao, and A. Geiger. (2021). “On the frequency bias
of generative models”. Advances in Neural Information Processing
Systems. 34: 18126–18136.

Segalis, E. and E. Galili. (2020). “OGAN: Disrupting Deepfakes with
an Adversarial Attack that Survives Training”. arXiv preprint
arXiv:2006.12247.

Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra. (2020). “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization”. International Journal
of Computer Vision.

Shafahi, A., W. R. Huang, C. Studer, S. Feizi, and T. Goldstein. (2020).
“Are adversarial examples inevitable?” arXiv:1809.02104 [cs, stat].
Feb. (Accessed on 05/26/2021).

Shi, C., C. Holtz, and G. Mishne. (2021). “Online adversarial purification
based on self-supervision”. arXiv preprint arXiv:2101.09387.

Shokri, R., M. Stronati, C. Song, and V. Shmatikov. (2017). “Member-
ship inference attacks against machine learning models”. In: 2017
IEEE symposium on security and privacy (SP). IEEE. 3–18.

Simonyan, K. and A. Zisserman. (2015). “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: International
Conference on Learning Representations (ICLR).

Souri, H., P. Khorramshahi, C. P. Lau, M. Goldblum, and R. Chellappa.
(2021). “Identification of Attack-Specific Signatures in Adversarial
Examples”. arXiv preprint arXiv:2110.06802.

Srinivasan, V., C. Rohrer, A. Marban, K.-R. Müller, W. Samek, and S.
Nakajima. (2021). “Robustifying models against adversarial attacks
by langevin dynamics”. Neural Networks. 137: 1–17.

References 97

Sun, Z., H. Jiang, D. Wang, X. Li, and J. Cao. (2023). “SAFL-Net:
Semantic-Agnostic Feature Learning Network with Auxiliary Plu-
gins for Image Manipulation Detection”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 22424–
22433.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. (2015). “Re-
thinking the Inception Architecture for Computer Vision”. CoRR.

Tan, M., B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le. (2019). “MnasNet: Platform-aware neural architecture
search for mobile”. In: CVPR.

Thaker, D., P. Giampouras, and R. Vidal. (2022). “Reverse Engineering
ℓp attacks: A block-sparse optimization approach with recovery
guarantees”. In: International Conference on Machine Learning.
PMLR. 21253–21271.

Tirupattur, P., K. Duarte, Y. S. Rawat, and M. Shah. (2021). “Modeling
multi-label action dependencies for temporal action localization”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1460–1470.

Tramer, F., N. Carlini, W. Brendel, and A. Madry. (2020). “On adaptive
attacks to adversarial example defenses”. arXiv preprint arXiv:2002.08347.

Tramèr, F., F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. (2016).
“Stealing machine learning models via prediction {APIs}”. In: 25th
USENIX security symposium (USENIX Security 16). 601–618.

Trinh, L., M. Tsang, S. Rambhatla, and Y. Liu. (2021). “Interpretable
and Trustworthy Deepfake Detection via Dynamic Prototypes”. In:
WACV. 1973–1983.

Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio. (2017). “Graph attention networks”. arXiv preprint
arXiv:1710.10903.

Vinyals, O., C. Blundell, T. Lillicrap, D. Wierstra, et al. (2016). “Match-
ing networks for one shot learning”. Advances in neural information
processing systems. 29.

Waldemarsson, C. (2020). Disinformation, Deepfakes & Democracy;
The European response to election interference in the digital age.
The Alliance of Democracies Foundation.

98 References

Wang, B. and N. Z. Gong. (2018). “Stealing hyperparameters in machine
learning”. In: 2018 IEEE symposium on security and privacy (SP).
IEEE. 36–52.

Wang, B., Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao. (2019). “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks”. In: 2019 IEEE Symposium on Security
and Privacy (SP). IEEE. 707–723.

Wang, J., Z. Wu, J. Chen, X. Han, A. Shrivastava, S.-N. Lim, and Y.-G.
Jiang. (2022). “Objectformer for image manipulation detection and
localization”. In: CVPR. 2364–2373.

Wang, R., G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and M. Wang. (2020a).
“Practical detection of trojan neural networks: Data-limited and
data-free cases”. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXIII 16. Springer. 222–238.

Wang, R., F. Juefei-Xu, M. Luo, Y. Liu, and L. Wang. (2021a). “Fake-
Tagger: Robust Safeguards against DeepFake Dissemination via
Provenance Tracking”. In: ACMM.

Wang, S.-Y., O. Wang, R. Zhang, A. Owens, and A. A. Efros. (2020b).
“CNN-generated images are surprisingly easy to spot... for now”. In:
CVPR. 8695–8704.

Wang, X., R. Girshick, A. Gupta, and K. He. (2018). “Non-local neural
networks”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 7794–7803.

Wang, X., Y. Li, C.-J. Hsieh, and T. C. M. Lee. (2023). “CAN MA-
CHINE TELL THE DISTORTION DIFFERENCE? A REVERSE
ENGINEERING STUDY OF ADVERSARIAL ATTACKS”. url:
https://openreview.net/forum?id=NdFKHCFxXjS.

Wang, Z., Q. She, and T. E. Ward. (2021b). “Generative Adversarial
Networks in Computer Vision: A Survey and Taxonomy”. ACM
Computing Surveys. 54(2).

Wen, B., Y. Zhu, R. Subramanian, T.-T. Ng, X. Shen, and S. Winkler.
(2016). “COVERAGE—A novel database for copy-move forgery de-
tection”. In: 2016 IEEE international conference on image processing
(ICIP). IEEE. 161–165.

https://openreview.net/forum?id=NdFKHCFxXjS

References 99

Wong, E., L. Rice, and J. Z. Kolter. (2020). “Fast is better than free:
Revisiting adversarial training”. In: International Conference on
Learning Representations (ICLR).

Wu, Y., W. AbdAlmageed, and P. Natarajan. (2019). “Mantra-net:
Manipulation tracing network for detection and localization of image
forgeries with anomalous features”. In: CVPR. 9543–9552.

Xie, C., Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille.
(2019). “Improving transferability of adversarial examples with in-
put diversity”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Xu, K., S. Liu, P. Zhao, P.-Y. Chen, H. Zhang, Q. Fan, D. Erdog-
mus, Y. Wang, and X. Lin. (2019). “Structured Adversarial Attack:
Towards General Implementation and Better Interpretability”. In:
International Conference on Learning Representations (ICLR).

Ye, J., J. He, X. Peng, W. Wu, and Y. Qiao. (2020). “Attention-driven
dynamic graph convolutional network for multi-label image recog-
nition”. In: Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16.
Springer. 649–665.

Yeh, C.-Y., H.-W. Chen, S.-L. Tsai, and S.-D. Wang. (2020). “Disrupt-
ing image-translation-based deepfake algorithms with adversarial
attacks”. In: WACVW.

Yoon, J., S. J. Hwang, and J. Lee. (2021). “Adversarial purification
with score-based generative models”. In: International Conference
on Machine Learning. PMLR. 12062–12072.

Yu, N., L. S. Davis, and M. Fritz. (2019). “Attributing fake images
to GANs: Learning and analyzing GAN fingerprints”. In: ICCV.
7556–7566.

Yun, S., D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. (2019).
“Cutmix: Regularization strategy to train strong classifiers with
localizable features”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 6023–6032.

Zhai, Y., T. Luan, D. Doermann, and J. Yuan. (2023). “Towards
Generic Image Manipulation Detection with Weakly-Supervised
Self-Consistency Learning”. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. 22390–22400.

100 References

Zhang, H., I. Goodfellow, D. Metaxas, and A. Odena. (2019a). “Self-
attention generative adversarial networks”. In: International confer-
ence on machine learning. PMLR. 7354–7363.

Zhang, K., W. Zuo, Y. Chen, D. Meng, and L. Zhang. (2017). “Beyond a
gaussian denoiser: Residual learning of deep cnn for image denoising”.
IEEE transactions on image processing. 26(7): 3142–3155.

Zhang, X., S. Karaman, and S.-F. Chang. (2019b). “Detecting and
simulating artifacts in gan fake images”. In: 2019 IEEE international
workshop on information forensics and security (WIFS). IEEE. 1–6.

Zhao, T., X. Xu, M. Xu, H. Ding, Y. Xiong, and W. Xia. (2021).
“Learning self-consistency for deepfake detection”. In: CVPR.

Zhou, J., X. Ma, X. Du, A. Y. Alhammadi, and W. Feng. (2023).
“Pre-training-free Image Manipulation Localization through Non-
Mutually Exclusive Contrastive Learning”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 22346–
22356.

Zhou, M. and V. M. Patel. (2022). “On Trace of PGD-Like Adversarial
Attacks”. arXiv preprint arXiv:2205.09586.

Zhou, P., B.-C. Chen, X. Han, M. Najibi, A. Shrivastava, S.-N. Lim, and
L. Davis. (2020). “Generate, segment, and refine: Towards generic
manipulation segmentation”. In: AAAI.

Zhou, P., X. Han, V. I. Morariu, and L. S. Davis. (2017). “Two-
stream neural networks for tampered face detection”. In: 2017 IEEE
conference on computer vision and pattern recognition workshops
(CVPRW). IEEE. 1831–1839.

Zhou, P., X. Han, V. I. Morariu, and L. S. Davis. (2018). “Learning
rich features for image manipulation detection”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition.
1053–1061.

Zhu, J.-Y., T. Park, P. Isola, and A. A. Efros. (2017). “Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks”.
In: ICCV.

	Introduction
	Reverse Engineering of Adversarial Examples
	Background and RED Formulation
	Evaluation Metrics and Denoising-Only Baseline
	Proposed Solution: Class-Discriminative Denoising for RED
	Experiments
	Conclusion

	Model Parsing via Adversarial Examples
	Background and Problem Setup
	Proposal: Multi-Task Classification of Model Attributes
	Experiments
	Conclusion

	Reverse Engineering of Generated Images
	Motivation and Background
	Problem Statement
	Proposed Method 1: Two-stage Model Parsing Network
	Proposed Method 2: Learnable Graph Pooling Network
	Conclusion

	Manipulation Localization of Generated Images
	Motivation and Background
	Problem Statement
	Passive Scheme Manipulation Localization
	Proactive Scheme Manipulation Localization
	Conclusion

	Conclusion and Discussion
	References

