
ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 1

Reverse Engineering of Generative Models:
Inferring Model Hyperparameters from

Generated Images
Vishal Asnani , Xi Yin, Tal Hassner, Xiaoming Liu

Abstract—State-of-the-art (SOTA) Generative Models (GMs) can synthesize photo-realistic images that are hard for humans to
distinguish from genuine photos. Identifying and understanding manipulated media are crucial to mitigate the social concerns on the
potential misuse of GMs. We propose to perform reverse engineering of GMs to infer model hyperparameters from the images
generated by these models. We define a novel problem, “model parsing”, as estimating GM network architectures and training loss
functions by examining their generated images – a task seemingly impossible for human beings. To tackle this problem, we propose a
framework with two components: a Fingerprint Estimation Network (FEN), which estimates a GM fingerprint from a generated image by
training with four constraints to encourage the fingerprint to have desired properties, and a Parsing Network (PN), which predicts
network architecture and loss functions from the estimated fingerprints. To evaluate our approach, we collect a fake image dataset with
100K images generated by 116 different GMs. Extensive experiments show encouraging results in parsing the hyperparameters of the
unseen models. Finally, our fingerprint estimation can be leveraged for deepfake detection and image attribution, as we show by
reporting SOTA results on both the deepfake detection (Celeb-DF) and image attribution benchmarks.

Index Terms—Reverse Engineering, Fingerprint Estimation, Generative Models, Deepfake Detection, Image Attribution

✦

1 INTRODUCTION

Image generation techniques have improved significantly in
recent years especially after the breakthrough of Generative Ad-
versarial Networks (GANs) [1]. Many Generative Models (GMs),
including both GAN and Variational Autoencoder (VAE) [2], [3],
[4], [5], [6], [7], [8], can generate photo-realistic images that are
hard for human to distinguish from genuine photos. This photo-
realism, however, raises increasing concerns for the potential
misuse of these models, e.g., by launching coordinated misinfor-
mation attack [9], [10]. As a result, deepfake detection [11], [12],
[13], [14], [15], [16] has recently attracted increasing attention.
Going beyond the binary genuine vs. fake classification as in deep-
fake detection, Yu et al. [17] proposed source model classification
given a generated image. This image attribution problem assumes
a closed set of GMs, used in both training and testing.

It is desirable to generalize image attribution to open-set
recognition, i.e., classify an image generated by GMs which were
not seen during training. However, one may wonder what else can
we do beyond recognizing a GM as an unseen or new model.
Can we know more about how this new GM was designed?
How its architecture differs from known GMs in the training set?
Answering these questions is valuable when we, as defenders,
strive to understand the source of images generated by malicious
attackers or identify coordinated misinformation attacks which use
the same GM. We view this as the grand challenge of reverse
engineering of GMs.

While image attribution of GMs is both exciting and challeng-
ing, our work aims to take one step further with the following
observation. When different GMs are designed, they mainly differ
in their model hyperparameters, including the network architec-

Vishal Asnani and Xiaoming Liu are with the Department of Computer Science
and Engineering at Michigan State University. Xi Yin and Tal Hassner are with
Facebook AI. All data, experiments, and code were collected, performed, and
developed at Michigan State University.

Fig. 1: Top: Three increasingly difficult tasks: (a) deepfake detection
classifies an image as genuine or fake; (b) image attribution predicts
which of a closed set of GMs generated a fake image; and (c) model
parsing, proposed here, infers hyperparameters of the GM used to
generate an image, for those models unseen during training. Bottom:
We present a framework for model parsing, which can also be applied
to simpler tasks of deepfake detection and image attribution.

tures (e.g., the number of layers/blocks, the type of normalization)
and training loss functions. If we could map the generated images
to the embedding space of the model hyperparameters used to
generate them, there is a potential to tackle a new problem we
termed as model parsing, i.e., estimating hyperparameters of an

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 2

TABLE 1: Comparison of our approach with prior works on reverse engineering of models, fingerprint estimation and deepfake detection. We
compare on the basis of Input and output of methods, whether the testing is done on multiple unseen GMs and whether the testing is done on
multiple datasets. [KEYS: R.E.: reverse engineering, I.A.: image attribution, D.D.: deepfake detection, Fing. est.: fingerprint estimation, mul.:
multiple, un.: unknown, N.A.: network architecture, L.F.: Loss function, para.: parameters, sup.: supervised, unsup.: unsupervised]

Method (Year) Purpose Input Output Fing.
est.

Test on
mul. GMs

Test on
un. GMs

Test on
mul. data

[18] (2016) R.E. Attack on models Training data ✗ ✗ ✗ ✗
[19] (2018) R.E. Input-output images N.A. para. ✗ ✗ ✗ ✗
[20] (2018) R.E. Memory access patterns Model weights ✗ ✗ ✗ ✗
[21] (2018) R.E. Electromagnetic emanations N.A. para. ✗ ✗ ✗ ✗
[22] (2019) I.A. Image ✗ Sup. ✔ ✗ ✔
[17] (2019) I.A. Image ✗ Sup. ✔ ✔ ✔
[23] (2020) I.A. Image ✗ Sup. ✔ ✗ ✔
[24] (2019) I.A. Image ✗ Sup. ✔ ✗ ✔
[11] (2019) D.D. Image ✗ ✗ ✗ ✗ ✔
[13] (2020) D.D. Image ✗ ✗ ✗ ✗ ✔
[12] (2019) D.D. Image ✗ ✗ ✗ ✗ ✔
[14] (2019) D.D. Image ✗ ✗ ✗ ✗ ✔
[15] (2020) D.D. Image ✗ ✗ ✗ ✗ ✔
[16] (2020) D.D. Image ✗ ✗ ✗ ✗ ✔
[25] (2020) D.D. Image ✗ ✗ ✗ ✗ ✔
[26] (2021) D.D. Image ✗ ✗ ✗ ✗ ✔

Ours (2022) R.E., I.A.,D.D. Image N.A. & L.F. para. Unsup. ✔ ✔ ✔

unseen GM from only its generated image (Figure 1). Reverse
engineering machine learning models has been done before by
relying on a model’s input and output [18], [19], or accessing the
hardware usage during inference [20], [21]. To the best of our
knowledge, however, reverse engineering has not been explored
for GMs, especially with only generated images as input.

There are many publicly available GMs that generate images
in diverse contents, including faces, digits, and generic scenes.
To improve the generalization of model parsing, we collect a
large-scale fake image dataset with various contents so that our
framework is not specific to a particular content. It consists of
images generated from 116 CNN-based GMs, including 81 GANs,
13 VAEs, 6 Adversarial Attack models (AAs), 11 Auto-Regressive
models (ARs) and 5 Normalizing Flow models (NFs). While
GANs or VAEs generate an image by feeding a genuine image
or latent code to the network, AAs modify a genuine image based
on its objectives via back-propagation. ARs generate each pixel of
a fake image sequentially, and NFs generate images via a flow-
based function. Despite such differences, we call all these models
as GMs for simplicity. For each GM, our dataset includes 1, 000
generated images. We use each model’s hyperparameters, includ-
ing network architecture parameters and training loss types, as the
ground-truth for model parsing training. We propose a framework
to peek inside the black boxes of these GMs by estimating their
hyperparameters from the generated images. Unlike the closed-
set setting in [17], we venture into quantifying the generalization
ability of our method in parsing unseen GMs.

Our framework consists of two components (Figure 1, bottom).
A Fingerprint Estimation Network (FEN) infers the subtle yet
unique patterns left by GMs on their generated images. Image
fingerprint was first applied to images captured by camera sen-
sors [27], [28], [29], [30], [31], [32], [33] and then extended
to GMs [17], [22]. We estimate fingerprints using different con-
straints which are based on the general properties of fingerprint,
including the fingerprint magnitude, repetitive nature, frequency
range and symmetrical frequency response. Different loss func-
tions are defined to apply these constraints so that the estimated
fingerprints manifest these desired properties. These constraints
enable us to estimate fingerprints of GMs without ground truth.

The estimated fingerprints are discriminative and can serve

as the cornerstone for subsequent tasks. The second part of our
framework is a Parsing Network (PN), which takes the fingerprint
as input and predicts the model hyperparameters. We consider
parameters representing network architectures and loss function
types. For the former, we form 15 parameters and categorize them
into discrete and continuous types. For the latter, we form a 10-
dimensional vector where each parameter represents the usage of
a particular loss function type. Classification is used for estimating
discrete parameters such as the normalization type, and regression
is used for continuous parameters such as the number of layers. To
leverage the similarity between different GMs, we group the GMs
into several clusters based on their ground-truth hyperparameters.
The mean and deviation are calculated for each GM. We use two
different parsers: cluster parser and instance parser to predict the
mean and deviation of these parameters, which are then combined
as the final predictions.

Among the 116 GMs in our collected dataset, there are 47
models for face generation and 69 for non-face image gener-
ation. We partition all GMs into two categories: face vs. non-
face. We carefully curate four evaluation sets for face and non-
face categories respectively, where every set well represents the
GM population. Cross validation is used in our experiments. In
addition to model parsing, our FEN can be used for deepfake
detection and image attribution. For both tasks, we add a shal-
low network that inputs the estimated fingerprint and performs
binary (deepfake detection) or multi-class classification (image
attribution). Although our FEN is not tailored for these tasks,
we still achieve state-of-the-art (SOTA) performance, indicating
the superior generalization ability of our fingerprint estimation.
Finally, in coordinated misinformation attack, attackers may use
the same GM to generate multiple fake images. To detect such
attacks, we also define a new task to evaluate how well our model
parsing results can be used to determine if two fake images are
generated from the same GM.

In summary, this paper makes the following contributions.

• We are the first to go beyond model classification by
formulating a novel problem of model parsing for GMs.

• We propose a novel framework with fingerprint estimation
and clustering of GMs to predict the network architecture
and loss functions, given a single generated image.

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 3

• We assemble a dataset of generated images from 116
GMs, including ground-truth labels on the network archi-
tectures and loss function types.

• We show promising results for model parsing and our
fingerprint estimation generalizes well to deepfake detec-
tion on the Celeb-DF benchmark [34] and image attribu-
tion [17], in both cases reporting results comparable or
better than existing SOTA [15], [17]. The parsed model
parameters can also be used in detecting coordinated
misinformation attacks.

2 RELATED WORK

Reverse engineering of models. There is a growing area of
interest to reverse engineering the hyperparameters of machine
learning models, with two types of approaches. First, some meth-
ods treat a model as a black box API by examining its input and
output pairs. For example, Tramer et al. [18] developed an avatar
method to estimate training data and model architectures, while
Oh et al. [19] trained a set of while-box models to estimate model
hyperparameters. The second type of approaches assumes that the
intermediate hardware information is available during model infer-
ence. Hua et al. [20] estimated both the structure and the weights
of a CNN model running on a hardware accelerator, by using
information leaks of memory access patterns. Batina et al. [21]
estimated the network architecture by using side-channel informa-
tion such as timing and electromagnetic emanations.

Unlike prior methods which require access to the models or
their inputs, our approach can reverse engineer GMs by examining
only the images generated by these models, making it more
suitable for real-world applications. We summarize our approach
with previous works in Tab. 1.
Fingerprint estimation. Every acquisition device leaves a subtle
but unique pattern on its captured image, due to manufacturing
imperfections. Such patterns are referred to as device fingerprints.
Device fingerprint estimation [27], [35] was extended to finger-
print estimation of GMs by Marra et al. [22], who showed that
hand-crafted fingerprints are unique to each GM and can be used
to identify an image’s source. Ning et al. [17] extended this idea
to learning-based fingerprint estimation. Both methods rely on the
noise signals in the image. Others explored frequency domain
information. For example, Wang et al. [23] showed that CNN
generated images have unique patterns in their frequency domain,
regarded as model fingerprints. Zhang et al. [24] showed that
features extracted from the middle and high frequencies of the
spectrum domain were useful in detecting upsampling artifacts
produced by GANs.

Unlike prior methods which derive fingerprints directly from
noise signals or the frequency domain, we propose several novel
loss functions to learn GM fingerprints in an unsupervised manner
(Tab. 1). We further show that our fingerprint estimation can
generalize well to other related tasks.
Deepfake detection. Deepfake detection is a new and active field
with many recent developments. Rossler et al. [11] evaluated
different methods for detecting face and mouth replacement ma-
nipulation. Others proposed SVM classifiers on colour difference
features [12]. Guarnera et al. [13] used Expectation Maximiza-
tion [36] algorithm to extract features and convolution traces for
classification. Marra et al. [14] proposed a multi-task incremental
learning to classify new GAN generated images. Chai et al. [37]
introduced a patch-based classifier to exaggerate regions that are

Fig. 2: Example images generated by all 116 GMs in our collected
dataset (one image per model).

more easily detectable. An attention mechanism [38] was proposed
by Hao et al. [15] to improve the performance of deepfake
detection. Masi et al. [25] amplifies the artifacts produced by
deepfake methods to perform the detection. Nirkin et al. [16]
seek discrepancies between face regions and their context [39]
as telltale signs of manipulation. Finally, Liu [26] uses the spatial
information as an additional channel for the classifier In our work,
the estimated fingerprint is fed into a classifier for genuine vs.
fake classification.

3 PROPOSED APPROACH

In this section, we first introduce our collected dataset in Sec. 3.1.
We then present the fingerprint estimation method in Sec. 3.2
and model parsing in Sec. 3.3. Finally, we apply our estimated
fingerprints to deepfake detection, image attribution, and detecting
coordinated misinformation attacks, as described in Sec. 3.4.

3.1 Data collection

We make the first attempt to study the model parsing problem.
Since data drives research, it is essential to collect a dataset for our
new research problem. Given a large number of GMs published in
recent years [40], [41], we consider a few factors while deciding
which GMs to be included in our dataset. First of all, since it
is desirable to study if model parsing is content-dependent, we
hope to collect GMs with as diverse content as possible, such as
the face, digits, and generic scenes. Secondly, we give preference
to GMs where either the authors have publicly released pre-
trained models, generated images, or the training script. Third,

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 4

Fig. 3: t SNE visualization for ground-truth vectors for (a) network architecture, (b) loss function and (c) network architecture and loss
function combined. The ground-truth vectors are fairly distributed across the embedding space regardless of the face/non-face data.

Fig. 4: Our framework includes two components: 1) the FEN is trained with four objectives for fingerprint estimation; and 2) the PN consists
of a shared network, two parsers to estimate mean and deviation for each parameter, encoder to estimate fusion parameter, fully connected
layers (FCs) for continuous type parameters and separate classifiers (CLs) for discrete type parameters in network architecture and loss function
prediction. Blue boxes denote trainable components; green boxes denote feature vectors; orange boxes denote loss functions; red boxes denote
other tasks our framework can handle; black arrows denote data flow; orange arrows denote loss supervisions. Best viewed in color.

the network architecture of the GM should be clearly described in
the respective paper.

To this end, we assemble a list of 116 publicly available GMs,
including ProGan [4], StyleGAN [2], and others. A complete list is
provided in the supplementary material. For each GM, we collect
1, 000 generated images. Therefore, our dataset D comprises
of 116, 000 images. We show example images in Figure 2.
These GMs were trained on datasets with various contents, such
as CelebA [42], MNIST [43], CIFAR10 [44], ImageNet [45],
facades [46], edges2shoes [46] and, apple2oranges [46].

We further document the model hyperparameters for each
GM as reported in their papers. Specifically, we investigate two
aspects: network architecture and training loss functions. We form
a super-set of 15 network architecture parameters (e.g., number of
layers, normalization type) and 10 different loss function types.
We obtain a large-scale fake image dataset D = {Xi,y

n
i ,y

l
i}Ni=1

where Xi is a fake image, yn
i ∈ R15 and yl

i ∈ R10 represent the
ground-truth network architecture and loss functions, respectively.
We also show the t-SNE distribution for both network architecture

and loss functions in Figure 3 for different type of models and
datasets. We observe that the ground-truth vectors for both net-
work architecture and loss function are evenly distributed across
the space for both types of data: face and non-face.

3.2 Fingerprint estimation

We adopt a network structure similar to the DnCNN model
used in [47]. As shown in Figure 4, the input to FEN is a
generated image X, and the output is a fingerprint image F of
the same size. Motivated from prior works on physical fingerprint
estimation [17], [22], [23], [24], [48], we define the following four
constraints to guide our estimated fingerprints to have the desirable
properties.

Magnitude loss. Fingerprints can be considered as image noise
patterns with small magnitudes. Similar assumptions were made
by others when estimating spoof noise for spoofed face im-
ages [48] and sensor noise for genuine images [27]. The first

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 5

TABLE 2: Hyper-parameters representing the network architectures of GMs. (KEYS: cont. int.: continuous integer.)
Parameter Type Range Parameter Type Range Parameter Type Range
layers cont. int. [5, 95] # filter cont. int. [0, 8365] non-linearity type in blocks multi-class 0, 1, 2, 3
convolutional layers cont. int. [0, 92] # parameters cont. int. [0.36M , 267M] non-linearity type in last layer multi-class 0, 1, 2, 3
fully connected layers cont. int. [0, 40] # blocks cont. int. [0, 16] up-sampling type binary 0, 1
pooling layers cont. int. [0, 4] # layers per block cont. int. [0, 9] skip connection binary 0, 1
normalization layers cont. int. [0, 57] normalization type multi-class 0, 1, 2, 3 down-sampling binary 0, 1

TABLE 3: Loss function types used by all GMs. We group the 10
loss functions into three categories. We use the binary representation
to indicate presence of each loss type in training the respective GM.

Category Loss function

Pixel-level

L1

L2

Mean squared error (MSE)
Maximum mean discrepancy (MMD)

Least squares (LS)

Discriminator

Wasserstein loss for GAN (WGAN)
Kullback–Leibler (KL) divergence

Adversarial
Hinge

Classification Cross-entropy (CE)

constraint is thus proposed to regularize the fingerprint image to
have a low magnitude with an L2 loss:

Jm = ||F||22. (1)

Spectrum loss. Previous work observed that fingerprints primarily
lie in the middle and high-frequency bands of an image [24].
We thus propose to minimize the low-frequency content in a
fingerprint image by applying a low pass filter to its frequency
domain:

Js = ||L(F(F), f)||22, (2)

where F is the Fourier transform, L is the low pass filter selecting
the f × f region in the center of the 2D Fourier spectrum and
making everything else zero.
Repetitive loss. Amin et al. [48] noted that the noise characteris-
tics of an image are repetitive and exist everywhere in its spatial
domain. Such repetitive patterns will result in a large magnitude in
the high-frequency band of the fingerprint. Therefore, we propose
to maximize the high-frequency information to encourage this
repetitiveness pattern:

Jr = −max{H(F(F), f)}, (3)

where H is a high pass filter assigning the f × f region in the
center of the 2D Fourier spectrum to zero.
Energy loss Wang et al. [23] showed that unique patterns exist
in the Fourier spectrum of the image generated by CNN networks.
These patterns have similar energy in the vertical and horizontal
directions of the Fourier spectrum. Our final constraint is proposed
to incorporate this observation:

Je = ||F(F)−F(F)T ||22, (4)

where F(F)T is the transpose of F(F).
These constraints guide the training of our fingerprint estima-

tion. As shown in Figure 4, the fingerprint constraint is given by:

Jf = λ1Jm + λ2Js + λ3Jr + λ4Je, (5)

where λ1, λ2, λ3, λ4 are the loss weights for each term.

3.3 Model parsing
The estimated fingerprint is expected to capture unique patterns
generated from a GM. Prior works adopted fingerprints for deep-
fake detection [12], [13] and image attribution [17]. However, we
go beyond those efforts by parsing the hyperparameters of GMs.
As shown in Figure 4, we perform prediction using two parsers,
namely, cluster parser and instance parser. We combine both
outputs for network architecture and loss function prediction. We
will now discuss the ground truth calculation and our framework
in detail.

3.3.1 Ground truth hyperparamters

Network architecture. In this work, we do not aim to recover
the network parameters. The reason is that a typical deep network
has millions of network parameters, which reside in a very high
dimensional space and is thus hard to predict. Instead, we propose
to infer the hyperparameters that define the network architecture,
which is much fewer than the network parameters. Motivated
by prior works in neural architecture search [49], [50], [51], we
form a set of 15 network architecture parameters covering various
aspects of architectures. As shown in Tab. 2, these parameters fall
into different data types and have different ranges. We further split
the network architecture parameters yn into two parts: ync ∈ R9

for continuous data type and ynd ∈ R6 for discrete data type.
Loss function. In addition to the network architectures, the
learned network parameters of trained GM can also impact the fin-
gerprints left on the generated images. These network parameters
are determined mainly by the training data and the loss functions
used to train these models. We, therefore, explore the possibility
of also predicting the training loss functions from the estimated
fingerprints. The 116 GMs were trained with 10 types of loss
functions as shown in Tab. 3. For each model, we compose a
ground-truth vector yl ∈ R10, where each element is a binary
value indicating whether the corresponding loss is used or not in
training this model.

Our framework parses two types of hyperparameters: contin-
uous and discrete. The former includes the continuous network
architecture parameters. The latter includes discrete network ar-
chitecture parameters and loss function parameters. For clarity, we
group these parameters into continuous and discrete types in the
remaining of this section to describe the model parsing objectives.
We use yc and yd to denote continuous and discrete parameters
respectively.

3.3.2 Cluster parser prediction
We have observed that directly estimate the hyperparameters inde-
pendently for each GM generates inferior results. In fact, some of
the GMs in our dataset have similar network architectures and/or
loss functions. It is intuitive to leverage the similarities among
different GMs for better hyperparameter estimation. To do this,
we perform k-means clustering to group all GMs into different
clusters, as shown in Figure 5. Then we propose to perform cluster

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 6

Fig. 5: The idea of grouping various GMs into different clusters. For
the test GM, we estimate it’s cluster mean and the deviation from that
mean to predict network architecture and loss function type.

level coarse prediction and GM level fine prediction, which are
subsequently combined to obtain the final prediction results.

As we aim to estimate the parameters for network architecture
and loss function, it is intuitive to combine them to perform group-
ing. Thus, we concatenate the ground truth network architecture
parameters yn and loss function parameters yl, denoted as ynl.
We use these ground truth vectors to perform k-means clustering
to find the optimal k-clusters in the dataset D = {C1,C2, ...Ck}.
Our clustering objective can be written as:

argmin
D

k∑
i=1

∑
ynl
j ∈Ci

||ynl
j − µi||2, (6)

where µi is the mean of the ground truth of the GMs in Ci.
Our dataset comprises of different kinds of GMs, namely

GANs, VAEs, AAs, ARs, and NFs. We perform clustering after
separating the training data into different kinds of GMs. This is
done to ensure that each cluster would belong to one particular
kind of GM. Next, we select the value of k i.e., the number of
clusters, using the elbow method adopted by previous works [52],
[53]. After determining the clusters comprising of similar GMs,
we estimate the ground truth yu to represent the respective cluster.
We estimate this cluster ground truth using different ways for
continuous and discrete parameters. For the former, we take the
average of each parameter using the ground truth for all GMs in
the respective cluster. For the latter, we perform majority voting
for every parameter to find the most common class across all GMs
in the cluster.

We use different loss functions to perform cluster-level pre-
diction. For continuous parameters, we perform regression for pa-
rameter estimation. As these parameters are in different ranges, we
further perform a min-max normalization to bring all parameters
to the range of [0, 1]. An L2 loss is used to estimate the prediction
error:

Jc
u = ||ŷc

u − yc
u||22, (7)

where ŷc
u is the cluster mean prediction and yc

u is the normalized
ground-truth cluster mean.

For discrete parameters, the prediction is made via individual
classifiers. Specifically, we train M = 16 classifiers (6 for
network architecture and 10 for loss function parameters), one

for each discrete parameter. The loss term for discrete parameters
cluster-prediction is defined as:

Jd
u = −

M∑
m=1

sum(yd
um

⊙ log(S(ŷd
um

))), (8)

where yd
um

is the ground-truth one-hot vector for the respective
class in the mth discrete type parameter, ŷd

um
are the class logits,

S is the Softmax function that maps the class logits into the
range of [0, 1], ⊙ is the element-wise multiplication, and sum()
computes the summation of a vector’s elements.

As shown in Figure 4, the clustering constraint is given by:

Ju = γ1J
c
u + γ2J

d
u , (9)

where γ1 and γ2 are the loss weights for each term.

3.3.3 Instance parser prediction

The cluster parser performs coarse-level prediction. To obtain a
more fine-level prediction, we use an instance parser to estimate
a GM-level prediction, which ignores any similarity among GMs.
This parser aims to predict the deviation of every parameter from
the coarse-level prediction. The ground truth deviation vector yv

can be estimated in different ways for two types of parameters. For
continuous type parameters, the deviation can be the difference
between the ground truth of the GM and the ground truth of the
cluster the GM was assigned. However, in the case of discrete
parameters, the actual ground truth class for the parameters can act
as the deviation from the most common class estimated in cluster
ground truth. We use different loss functions to perform deviation-
level prediction. Specifically, we use an L2 loss to estimate the
prediction error for continuous parameters:

Jc
v = ||ŷc

v − yc
v||22, (10)

where ŷc
v is the deviation prediction and yc

v is the deviation
ground-truth of continuous data type.

We have noticed the class distribution for some discrete
parameters is imbalanced. Therefore, we apply the weighted cross-
entropy loss for every parameter to handle this challenge. We train
M = 16 classifiers, one for each of the discrete parameters. For
the m-th classifier with Nm classes (Nm = 2 or 4 in our case), we
calculate a loss weight for each class as wi

m = N
Ni

m
where N i

m is
the number of training examples for the ith class of m-th classifier,
and N is the number of total training examples. As a result, the
class with more examples is down-weighted, and the class with
fewer examples is up-weighted to overcome the imbalance issue,
which will be empirically demonstrated in Fig 9. The loss term for
discrete parameters deviation-prediction is defined as:

Jd
v = −

M∑
m=1

sum(wm ⊙ yd
vm ⊙ log(S(ŷd

vm))), (11)

where yd
vm is the ground-truth one-hot deviation vector for the

m-th classifier, wm is a weight vector for all classes in the m-th
classifier and ŷd

vm
are the class logits.

As shown in Figure 4, the deviation constraint is given by:

Jv = γ3J
c
v + γ4J

d
v . (12)

where γ3 and γ4 are the loss weights for each term.

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 7

3.3.4 Combining predictions
We use a cluster parser to perform a coarse-level mean prediction
and an instance parser to predict a deviation prediction for each
GM. The final prediction of our framework i.e., the prediction
at the fine-level is the combination of the outputs of these two
parsers. For continuous parameters, we perform the element-wise
addition of the coarse-level mean and deviation prediction:

ŷc = ŷc
u + ŷc

v, (13)

For discrete parameters, we have observed that element-wise
addition of the logits for every classifier in both parsers didn’t
perform well. Therefore, to integrate the outputs, we train an
encoder network to predict a fusion parameter p̂d ∈ [0, 1] for each
classifier. For any parameter, the value of the fusion parameter is
1 if the cluster class is the same as the GM class, encouraging the
parsing network to give importance to the cluster parser output.
The value of the fusion parameter is 0 if the GM class is different
from the cluster class. Therefore, for m-th classifier, the training of
the model is supervised by the ground truth pdm as defined below:

pdm =

{
1, yd

um
= yd

vm

0, yd
um

̸= yd
vm .

(14)

To train our encoder, we use the ground truth fusion parameter
pd which is the concatenation for all parameters. The training is
done via cross-entropy loss as shown below:

Jp = −
M∑

m=1

(pdmlog(G(p̂dm)) + (1− pdm)log(1− G(p̂dm))).

(15)
where G is the Sigmoid function that maps the class logits into the
range of [0, 1].

As shown in Figure 4 for discrete parameters, the final predic-
tion is given by:

ŷd = p̂d ⊙ ŷd
u + (1− p̂d)⊙ ŷd

v. (16)

The overall loss function for model parsing is given by:

J = Jf + Ju + Jv + γ5Jp. (17)

where γ5 is the loss weight for fusion constraint. Our framework is
trained end-to-end with fingerprint estimation (Eqn. 5) and model
parsing (Eqn. 17).

3.4 Other applications
In addition to model parsing, our fingerprint estimation can be eas-
ily leveraged for other applications such as detecting coordinated
misinformation attacks, deepfake detection and image attribution.
Coordinated misinformation attack. In coordinated misinfor-
mation attacks, the attackers often use the same model to generate
multiple fake images. One way to detect such attacks is to classify
whether two fake images are generated from the same GM, despite
that this GM might be unseen to the classifier. This task is not
straightforward to perform by prior works. However, given the
ability of our model parsing, this is the ideal task that we can
contribute. To perform this binary classification task, we use the
parsed network architecture and loss function parameters to cal-
culate the similarity score between two test images. We calculate
the cosine similarity for continuous type parameters and fraction
of the number of parameters having same class for discrete type.
Both cosine similarity and fraction of parameters are averaged to

get the similarity score. Comparing the cosine similarity with a
threshold will lead to the binary classification decision of whether
two images come from the same GM or not.
Deepfake detection. We consider the binary classification of
an image as either genuine or fake. We add a shallow network
on the generated fingerprint to predict the probabilities of being
genuine or fake. The shallow network consists of five convolution
layers and two fully connected layers. Both genuine and fake
face images are used for training. Both FEN and the shallow
network are trained end-to-end with the proposed fingerprint
constraints (Eqn. 5) and a cross-entropy loss for genuine vs. fake
classification. Note that the fingerprint constraints (Eqn. 5) are not
applied to the genuine input face images.
Image attribution. We aim to learn a mapping from a given
image to the model that generated it if it is fake or classified
as genuine otherwise. All models are known during training. We
solve image attribution as a closed-set classification problem.
Similar to deepfake detection, we add a shallow network on
the generated fingerprint for model classification with the cross-
entropy loss. The shallow network consists of two convolutional
layers and two fully connected layers.

4 EXPERIMENTS

4.1 Settings

Dataset. As described in Sec. 3.1, we have collected a fake image
dataset consists of 116K images from 116 GMs (1K images
per model) for model parsing experiments. These models can be
split into two parts: 47 face models and 69 non-face models.
Instead of performing one split of training and testing sets, we
carefully construct four different splits with a focus on curating
well-represented test sets. Specifically, each testing set includes
six GANs, two VAEs, two ARs, one AA and one NF model.
We perform cross-validation to train on 104 models and evaluate
on the remaining 12 models in testing sets. The performance are
averaged across four testing sets.

For deepfake detection experiments, we conduct experiments
on the recently released Celeb-DF dataset [34], consisting of 590
real and 5, 639 fake videos. For image attribution experiments, a
source database with genuine images needs to be selected, from
which the fake images can be generated by various GAN models.
We select two source datasets: CelebA [34] and LSUN [54], for
two experiments. From each source dataset, we construct a training
set of 100K genuine and 100K fake face images produced by
each of the same four GAN models used in Yu et al. [17], and a
testing set with 10K genuine and 10K fake images per model.
Implementation details. Our framework is trained end-to-end
with the loss functions of Eqn. 5 and Eqn. 17. The loss weights
are set to make the magnitudes of all loss terms comparable:
λ1 = 0.05, λ2 = 0.001, λ3 = 0.1, λ4 = 1, γ1 = 5, γ2 = 5,
γ3 = 5, γ4 = 5, γ5 = 5, γ6 = 5, γ7 = 1, γ8 = 1. The value of f
for spectrum loss and repetitive loss in the fingerprint estimation
is set to 50. For each of four test sets, we calculate the number
of clusters k using the elbow method. We divide the data into
different GM types and perform k-means clustering separately for
each type. According to the sets defined in the supplementary, we
obtain the value of k as 11, 11, 15, and 13. We use Adam optimizer
with a learning rate of 0.0001. Our framework is trained with a
batch size of 32 for 10 epochs. All the experiments are conducted
using NVIDIA Tesla K80 GPUs.

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 8

Evaluation metrics. For continuous type parameters, we report
the L1 error for the regression estimation of continuous type
parameters. We also report p-value of t-test, correlation coefficient,
coefficient of determination [55] and slope of RANSAC regression
line [56] to show the effectiveness of regression in our approach.
For discrete type parameters, as there is imbalance in the dataset
for different parameters, we compute the F1 score [57], [58] for
classification performance. We also report classification accuracy
for discrete type parameters. For all cross-validation experiments,
we report the averaged results across all images and all GMs.

4.2 Model parsing results

As we are the first to attempt GM parsing, there are no prior works
for comparison. To provide a baseline, we therefore draw analogy
with the image attribution task, where each model is represented
as a one-hot vector and different models have equal inter-model
distances in the high-dimensional space defined by these one-hot
vectors. In model parsing, we represent each model as a 25-D
vector consisting of network architectures (15-D) and training loss
functions (10-D). Thus, these models are not of equal distance in
the 25-D space.

Based on the aforementioned observation, we define a base-
line, referred here as random ground-truth. Specifically, for each
parameter, we shuffle the values/classes across all 116 GMs to en-
sure that the assigned ground-truth is different from actual ground-
truth but also preserving the actual distribution of each parameter.
These random ground-truth vectors have the same properties as
our ground-truth vectors in terms of non-equal distances. But the
shuffled ground truths are meaningless, and are not corresponding
to their true model hyperparameters. Due to the randomness nature
of this baseline, we perform three random shuffling and then report
the averaged performance.

To validate the effects of our proposed fingerprint estimation
constraints, we conduct an ablation study and train our framework
end-to-end with only the model parsing objective in Eqn. 17.
This results in the no fingerprint baseline. Finally to show the
importance of our clustering and deviation parser, we estimate
the network architecture and loss functions using just one parser,
which estimates the parameters directly instead of a mean and
deviation. We refer this as using one parser baseline.
Network architecture prediction. We report results of network
architecture prediction in Tab. 4 for the 4 testing sets, as defined
in Sec. 4.1. Our method achieves a much lower L1 error com-
pared to the random ground-truth baseline for continuous type
parameters and higher classification accuracy and F1 score for
discrete type parameters. This result indicates that there is indeed
a much stronger and generalized correlation between generated
images and the embedding space of meaningful architecture
hyper-parameters and loss function types, compared to a random
vector of the same length and distribution. This correlation is the
foundation of why model parsing of GMs can be a valid and
feasible task. Removing fingerprint estimation objectives leads to
worse results showing the importance of the fingerprint estimation
in model parsing. We demonstrate the effectiveness of estimating
mean and deviation by evaluating the performance of using just
one parser. Our method clearly outperforms the approach of using
one parser.

Figure 6 shows the detailed L1 error and F1 score for all
network architecture parameters. We observe that our method per-
forms substantially better than the random ground-truth baseline

Fig. 6: L1 error and F1 score for continuous and discrete parameters
respectively of network architecture averaged across all images of
all models in the 4 test sets. Not only we have better average
performance, but also our standard deviations are smaller.

Fig. 7: F1 score for each loss function type at coarse and fine levels
averaged across all images of all models in the 4 test sets. We also
show the standard deviation of performance across different sets.

for almost all parameters. As for the no fingerprint and using
one parser baselines, our method is still better in most cases
with a few parameters showing similar results. We also show
the standard deviation of every estimated parameter for all the
methods. Our proposed approach in general has smaller standard
deviations than the two baselines, For continuous type parame-
ters, we further show the effectiveness of regression prediction
by evaluating four metrics namely, p-value of t-test, correlation
coefficient, coefficient of determination and slope of RANSAC
regression line. These metrics are evaluated between prediction
and ground-truth. We report the mean and the standard deviation
across all four sets. The p-value of our approach is less than 0.05
making our estimation statistically significant. For other three
metrics, the values closer to 1 shows effective regression. For
our method, we have slope of 0.921, correlation coefficient of
0.744 and coefficient of determination as 0.612 which shows the
effectiveness of our approach. Further, our approach outperforms
all the baselines for all four metrics.

Loss function prediction. We calculate the F1 score and classi-
fication accuracy for loss function parameters. The performance
are shown in Tab. 5. For the random ground-truth baseline, the
performance is close to a random guess. Our approach performs
much better than all the baselines. Figure 7 shows the detailed
F1 score for all loss function parameters. Apparently our method

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 9

TABLE 4: Performance of network architecture prediction. We use L1 error, p-value, correlation coefficient, coefficient of determination
and slope of RANSAC regression line for continuous type parameters. For discrete parameters, we use F1 score and classification accuracy.
Our method performs better for both types of variables compared to the three baselines. [KEYS: corr.: correlation, coef.: coefficient, det.:
determination]

Method Continuous type Discrete type
L1 error ↓ P-value ↓ Corr. coef. ↑ Coef. of det. ↑ Slope ↑ F1 score ↑ Accuracy ↑

Random ground-truth 0.184± 0.019 0.00061± 0.00035 0.261± 0.181 0.315± 0.095 0.592± 0.041 0.529± 0.078 0.575± 0.097
No fingerprint 0.170± 0.035 0.00655± 0.01045 0.738± 0.014 0.605± 0.152 0.892± 0.021 0.700± 0.032 0.663± 0.104
Using one parser 0.161± 0.028 0.00801± 0.01387 0.226± 0.030 0.512± 0.116 −0.529± 0.075 0.607± 0.034 0.593± 0.104
Ours 0.149± 0.019 0.00045± 0.00061 0.744± 0.098 0.612± 0.161 0.921± 0.021 0.718± 0.036 0.706± 0.040

Fig. 8: Performance of all GMs in our 4 testing sets. Similar performance trends are observed for network architecture and loss functions, i.e.,
if the L1 error is small for continuous type parameters in network architecture, the high F1 score is also observed for discrete type parameter
in network architecture and loss function. In other words, the abilities to reverse engineer the network architecture and loss functions types for
one GM are reasonably consistent.

TABLE 5: F1 score and classification accuracy for loss type predic-
tion. Our method performs better than all the three baselines.

Method Loss function prediction
F1 score ↑ Classification accuracy ↑

Random ground-truth 0.636± 0.017 0.716± 0.028
No fingerprint 0.800± 0.116 0.763± 0.079
Using one parser 0..687± 0.036 0.633± 0.052
Ours 0.813± 0.019 0.792± 0.021

works better than both baselines for almost all parameters. We also
show the standard deviation of every estimated parameter for all
the methods. Similar behaviour of standard deviation for different
methods was observed as in the network architecture. Figure 8
provides another perspective of model parsing by showing the
performance in terms of 48 unique GMs across our 4 testing sets.

4.3 Ablation study

Face vs. non-face GMs. Our dataset consists of 47 GMs trained
on face datasets and 69 GMs trained on non-face datasets. Let’s
denote these GMs as face GMs and non-face GMs, respectively.
All aforementioned experiments are conducted by training on
104 GMs and evaluating on 12 GMs. Here we conduct an
ablation study to train and evaluate on different types of GMs. We
study the performance on face and non-face testing GMs when
training on three different training sets, including only face GMs,
only non-face GMs and all GMs. Note that all testing GMs are
excluded during training each time. We also add a baseline where
both regression and classification make a random guess on their
estimation.

The results are shown in Tab. 6. We have three observations.
First, model parsing for non-face GMs are easier than face GMs.

This might be partially due to the generally lower-quality images
generated by non-face GMs compared to those by face GMs, thus
more traces are remained for model parsing. Second, training and
testing on the same content can generate better results than on
different contents. Third, training on the full datasets improves
some parameter estimation but may hurt other parameters slightly.

Weighted cross-entropy loss. As mentioned before, the ground
truth of many network hyperparameters have biased distributions.
For example, the “normalization type” parameter in Tab. 2 has
uneven distribution among its 4 possible types. With this biased
distribution, our classifier might make a constant prediction to the
type with the highest probability in the ground truth, as this could
minimize the loss especially for severe biasness. This degenerate
classifier clearly has no value to model parsing. To address this
issue, we propose to use the weighted cross-entropy loss with
different loss weights for each class. These weights are calculated
using the ground-truth distribution of every parameter in the full
dataset. To validate if the above approach is able to remedy this
issue, we compare it with the standard cross-entropy loss.

Figure 9 shows the confusion matrix for discrete type pa-
rameters in network architecture prediction and coarse/fine level
parameters in loss function prediction. The rows in the confusion
matrix are represented by predicted classes and columns are
represented by the ground-truth classes. We clearly see that the
classifier is mostly biased towards more frequent classes in all 4
examples, when the standard cross-entropy loss is used. However,
this problem is remedied when using the weighted cross-entropy
loss, and the classifiers make meaningful predictions.

Fingerprint losses. We proposed four loss terms in Sec. 3.2
to guide the training of the fingerprint estimation including
magnitude loss, spectrum loss, repetitive loss and energy loss.

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 10

TABLE 6: Performance comparison by varying the training and testing data for face and non-face GMs. Testing performance on non-face
GMs is better compared to face GMs. Training and testing on the same content produces better results than on the different contents.

Test GMs (# GMs) Train GMs (# GMs)
Network architecture Loss function

Continuous type Discrete type F1 score ↑
L1 error ↓ F1 score ↑

Face (6)
Face (41) 0.139± 0.042 0.729± 0.106 0.788± 0.146

Non-face (69) 0.213± 0.066 0.688± 0.125 0.759± 0.100
Full (110) 0.118± 0.046 0.712± 0.129 0.833± 0.136

Non-face (6)
Non-face (63) 0.118± 0.021 0.794± 0.110 0.864± 0.094

Face (47) 0.125± 0.031 0.667± 0.099 0.858± 0.115
Full (110) 0.082± 0.045 0.832± 0.046 0.886± 0.061

Random guess 0.393 0.500 0.500

Fig. 9: Confusion matrix in the estimation of four parameters in the network architecture and loss function. (a)-(d): Standard cross-entropy
and (e)-(f): Weighted cross entropy. Weighted cross entropy handles imbalance data much better than the standard cross entropy which usually
predicts one class.

TABLE 7: Ablation study of the 4 loss terms in fingerprint estimation.
Removing any one loss for fingerprint estimation deteriorates the
performance with the worse results in the case of removing all losses.
[KEYS: fing.: fingerprint]

Loss removed
Network architecture Loss function

Continuous type Discrete type
F1 score ↑L1 error ↓ F1 score ↑

Magnitude loss 0.156± 0.007 0.674± 0.012 0.755± 0.046
Spectrum loss 0.149± 0.022 0.676± 0.034 0.786± 0.042
Repetitive loss 0.150± 0.018 0.708± 0.031 0.794± 0.031
Energy loss 0.162± 0.032 0.703± 0.045 0.785± 0.028
All (no fing.) 0.170± 0.035 0.700± 0.032 0.800± 0.016
Nothing (ours) 0.149± 0.019 0.718± 0.036 0.813± 0.019

We conduct an ablation study to demonstrate the importance of
these four losses in our proposed method. This includes four
experiments, each removing one of the loss terms and comparing

TABLE 8: Network architecture estimation and loss function predic-
tion when given multiple images of one GM. Performance increases
when enlarging the number of images for evaluation from 1 to 10.
Performance becomes stable for more than 10 images.

images
Network architecture Loss function

Continuous type Discrete type
F1 score ↑L1 error ↓ F1 score ↑

1 0.215± 0.054 0.696± 0.089 0.798± 0.010
10 0.151± 0.033 0.726± 0.075 0.793± 0.070
100 0.145± 0.032 0.721± 0.073 0.789± 0.071
500 0.146± 0.033 0.720± 0.070 0.808± 0.007

the performance with our proposed method (remove nothing) and
no fingerprint baseline (remove all). As shown in Tab. 7, removing
any loss for fingerprint estimation hurts the performance. Our “no
fingerprint” baseline, for which we remove all losses, performs
worst of all. Therefore, each loss clearly has a positive effect on
the fingerprint estimation and model parsing.

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 11

Fig. 10: Estimated fingerprints (left) and corresponding frequency spectrum (right) from one generated image of each of 116 GMs. Many
frequency spectrums show distinct high frequency signals, while some appear to be similar to each other.

Model parsing with multiple images. We evaluate model parsing
when varying the number of test images. For each GM, we
randomly select 1, 10, 100, and 500 images per GM from different
face GMs sets for evaluation. With multiple images per GM, we
average the prediction for continuous type parameters and take
majority voting for discrete type parameters and loss function
parameters. We compute the L1 error and F1 score for the
continuous and discrete type parameters respectively and average
the result across different sets. We repeat the above experiment
multiple times, each time randomly selecting the number of
images. We compare the L1 error and F1 score for respective
parameters. Tab. 8 shows noticeable gains with 10 images and
minor gains with 100 images. There is no much performance
difference when evaluating on 100 or 500 images, which suggests
that our framework is robust in generating consistent results when
tested on different numbers of generated images by the same GM.

Content-independent fingerprint. Ideally our estimated finger-
print should be independent of the content of the image. That is,
the fingerprint only includes the trace left by the GM while not
indicating the content in any way. To validate this, we partition all
GMs into four classes based on their contents: FACES (47 GMs),
MNIST (25), CIFAR10 (31), and OTHER (13). Every class has
images generated by the GMs belong to this class. We feed these
images to a pre-trained FEN and obtain their fingerprints. Then we
train a shallow network consisting of five convolutional layers and
two fully connected layers for a 4-way classification. However,
we observe the training cannot converge. This means that our
estimated fingerprint from FEN doesn’t have any content specific
properties for content classification. As a result, the model parsing
of the hyperparameters doesn’t leverage the content information

TABLE 9: Binary classification performance for coordinated misin-
formation attack.

Method AUC (%) Classification accuracy (%)
FEN 83.5 76.85

FEN + PN 87.3 80.6

across different GMs, which is a desirable property.

4.4 Visualization

Figure 10 shows an estimated fingerprint image and its frequency
spectrum averaged over 25 randomly selected images per GM.
We observe that estimated fingerprints have the desired properties
defined by our loss terms, including low magnitude and highlights
in middle and high frequencies.

We also find that the fingerprints estimated from different
generated images of the same GM are similar. To quantify this,
we compute a Cosine similarity matrix C ∈ R116×116 where
C(i, j) is the averaged Cosine similarity of 25 randomly sampled
fingerprint pairs from GM i and j. The matrix C in Figure 11
clearly illustrates the higher intra-GM and lower inter-GM finger-
print similarities.

4.5 Applications

Coordinated misinformation attack. Our model parsing frame-
work can be leveraged to estimate whether there exists a coordi-
nated misinformation attack. That is, given two fake images, we
hope to classify whether they are generated from the same GM
or not. We do so by computing the Cosine similarity between
the hyperparameters parsed from the given two images. First,

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 12

Fig. 11: Cosine similarity matrix for pairs of 116 GM’s fingerprints. Each element of this matrix is the average Cosine similarities of 50
pairs of fingerprints from two GMs. We see the higher intra-GM and lower inter-GM similarities. We can also see GMs with similar network
architecture or loss function are clustered together, as shown in the red boxes in the left.

we train our framework on 101 GMs, and test on 15 seen
GMs and 15 unseen GMs. To evaluate this task, we report the
Area Under Curve (AUC) and the classification accuracy at the
optimum threshold. The results are shown in Tab. 9 comparing
two methods, just using FEN network and using both FEN and PN.
We conclude that our framework using FEN and PN can identify
whether two images came from the same source with around 80%
accuracy. Using only FEN network to compare the similarities of
the fingerprint performs worse. This justifies the benefit of using
of parsed parameters for coordinated misinformation attack.

In fact, due to the nature of our test set, each pair of test sample
can come from five different categories, namely, 1. Same seen
GM, 2. Same unseen GM, 3. Different seen GMs, 4. Different
unseen GMs, and 5. One seen and one unseen GM. We show

an analysis of the wrongly classified samples in Figure 12 with
respect to total number of samples and total number of samples
in each category. Around 70% of the wrongly classified samples
come from the category of images coming from categories having
atleast one GM unseen in training which is expected. However,
if one of the test GM was seen in training, the number of
wrongly classified samples decreased. This can be advantageous
in detecting a manipulated image from an unknown GM.

Deepfake detection. Our FEN can be adopted for deepfake
detection by adding a shallow network for binary classification.
We evaluate our method on the recently introduced Celeb-DF
dataset [34]. We experiment with three training sets, UADFV,
DFFD, and FF++, in order to compare with previous results. We
follow the same training protocols used in [15] for UADFV and

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 13

TABLE 10: AUC for deepfake detection on the Celeb-DF
dataset [34].

Method Training Data AUC (%)
Methods training with pixel-level supervision

Xception+Reg [15] DFFD 64.4
Xception+Reg [15] DFFD, UADFV 71.2

Methods training with image-level supervision
Two-stream [59]

Private

53.8
Meso4 [60] 54.8

VA-LogReg [61] 55.1
DSP-FWA [62] 64.6
Multi-task [63] FF 54.3
Capsule [64]

FF++

57.5
Xception-c40 [11] 65.5
Two-branch [25] 73.4

SPSL [26] 76.8
SPSL [26] (reproduced) 73.2

Ours (fingerprint) 69.6
Ours (image+fingerprint) 71.1

Ours (image+fingerprint+phase) 74.6
Ours (model parsing) 64.3

HeadPose [65]

UADFV

54.6
FWA [66] 56.9

Xception [15] 52.2
Xception+Reg [15] 57.1

Ours 64.7
Xception [15] DFFD 63.9

Ours 65.3
Xception [15] DFFD, UADFV 67.6

Ours 70.2

TABLE 11: Classification rates of image attribution. The baseline
results are cited from [17].

Method CelebA LSUN
kNN 28.00 36.30
Eigenface [67] 53.28 -
PRNU [22] 86.61 67.84
Yuet al. [17] 99.43 98.58
Ours 99.66 99.84

Fig. 12: Percentage of wrongly classified samples for five different
categories of test sample pair. A larger number of sample pairs are
wrongly classified if the pair of images come from same unseen GMs.

DFFD and [26] for FF++.
We report the AUC in Tab. 10. Compared with methods

trained on UADFV, our approach achieves a significantly better
result, despite the more advanced backbones used by others. Our
results when trained on DFFD and UADFV fall only slightly
behind the best performance reported by Xception+Reg [15].
Importantly, however, they trained with pixel-level supervision
which are typically unavailable. These results are provided for
completeness, but are not directly comparable to all other methods
trained with only image-level supervision for binary classification.
Compared to all other methods, our method achieves the highest
deepfake detection AUC.

Finally, we compare the performance of our method when

trained on FF++ dataset. [26] performs the best by using the phase
information as an additional channel to the xception classifier.
However, as the pre-trained models were not released for [26],
we reproduce their method and report the performance shown in
Tab. 10. We observe a performance gap between the reproduced
and reported performance which should be further investigated
in the future. Following [26], we concatenate the fingerprint
information with the RGB image and phase channels which are
passed through a Xception classifier. Our method outperforms the
reproduced performance of [26] showing the additional benefit of
our fingerprint. Finally, we also perform the classification based
on the pre-trained model parsing network and fine-tune it using
the classification loss. The performance deteriorated compared to
using the fingerprint. This shows that although the model parsing
network have some deepfake detection abilities, they are less
informative to perform deepfake detection well.
Image attribution. Similar to deepfake detection, we use a
shallow network for image attribution. The only difference is
that image attribution is a multi-class task and depends on the
number of GMs during training. Following [17], we train our
model on 100K genuine and 100K fake face images each from
four GMs: SNGAN [68], MMDGAN [69], CRAMERGAN [70]
and ProGAN [4], for five-class classification. Tab. 11 reports
the performance. Our result on CelebA [34] and LSUN [54]
outperform the performance in [17]. This again validates the
generalization ability of the proposed fingerprint estimation.

5 CONCLUSION

In this paper, we define the model parsing problem as inferring the
network architectures and training loss functions of a GM from
the generative images. We make the first attempt to tackle this
challenge problem. The main idea is to estimate the fingerprint
for each image and use it for model parsing. Four constraints
are developed for fingerprint estimation. We propose hierchiarial
learning to parse the hyperparameters in coarse-level and fine-
level that can leverage the similarities between different GMs.
Our fingerprint estimation framework can not only perform model
parsing, but also extend to detecting coordinated misinforma-
tion attack, deepfake detection and image attribution. We have
collected a large-scale fake image dataset from 116 different
GMs. Various experiments have validated the effects of different
components in our approach.

ACKNOWLEDGEMENT

This work was partially supported by Facebook AI. This material,
except Section 4.5 and related efforts, is based upon work partially
supported by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR00112090131 to Xiaoming
Liu at Michigan State University.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
NeurIPS, 2014.

[2] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in CVPR, 2019.

[3] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN:
Unified generative adversarial networks for multi-domain image-to-
image translation,” in CVPR, 2018.

[4] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
GANs for improved quality, stability, and variation,” in ICLR, 2018.

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 14

[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
ICLR, 2014.

[6] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, “Understanding disentangling in β-VAE,” in NeurIPS,
2017.

[7] R. T. Q. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating sources of
disentanglement in variational autoencoders,” in NeurIPS, 2018.

[8] P. Dhariwal and A. Q. Nichol, “Diffusion models beat GANs on image
synthesis,” in Advances in Neural Information Processing Systems,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021.
[Online]. Available: https://openreview.net/forum?id=AAWuCvzaVt

[9] C. Waldemarsson, Disinformation, Deepfakes & Democracy; The Euro-
pean response to election interference in the digital age. The Alliance
of Democracies Foundation, 2020.

[10] V. Heath, “From a sleazy Reddit post to a national security threat: A
closer look at the deepfake discourse,” in Disinformation and Digital
Democracies in the 21st Century. The NATO Association of Canada,
2019.

[11] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and
M. Nießner, “FaceForensics++: Learning to detect manipulated facial
images,” in ICCV, 2019.

[12] S. McCloskey and M. Albright, “Detecting GAN-generated imagery
using saturation cues,” in ICIP, 2019.

[13] L. Guarnera, O. Giudice, and S. Battiato, “Deepfake detection by analyz-
ing convolutional traces,” in CVPRW, 2020.

[14] F. Marra, C. Saltori, G. Boato, and L. Verdoliva, “Incremental learning
for the detection and classification of GAN-generated images,” in WIFS,
2019.

[15] H. Dang, F. Liu, J. Stehouwer, X. Liu, and A. K. Jain, “On the detection
of digital face manipulation,” in CVPR, 2020.

[16] Y. Nirkin, L. Wolf, Y. Keller, and T. Hassner, “Deepfake detection based
on the discrepancy between the face and its context,” arXiv preprint
arXiv:2008.12262, 2020.

[17] N. Yu, L. S. Davis, and M. Fritz, “Attributing fake images to GANs:
Learning and analyzing GAN fingerprints,” in ICCV, 2019.

[18] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in USENIXSS, 2016.

[19] S. J. Oh, M. Augustin, M. Fritz, and B. Schiele, “Towards reverse-
engineering black-box neural networks,” in ICLR, 2018.

[20] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in DAC, 2018.

[21] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engineering
of neural network architectures through electromagnetic side channel,” in
USENIXSS, 2019.

[22] F. Marra, D. Gragnaniello, L. Verdoliva, and G. Poggi, “Do GANs leave
artificial fingerprints?” in MIPR, 2019.

[23] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “CNN-
generated images are surprisingly easy to spot... for now,” in CVPR,
2020.

[24] X. Zhang, S. Karaman, and S.-F. Chang, “Detecting and simulating
artifacts in GAN fake images,” in WIFS, 2019.

[25] I. Masi, A. Killekar, R. M. Mascarenhas, S. P. Gurudatt, and W. Ab-
dAlmageed, “Two-branch recurrent network for isolating deepfakes in
videos,” in ECCV. Springer, 2020.

[26] H. Liu, X. Li, W. Zhou, Y. Chen, Y. He, H. Xue, W. Zhang, and
N. Yu, “Spatial-phase shallow learning: rethinking face forgery detection
in frequency domain,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 772–781.

[27] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from
sensor pattern noise,” IEEE Transactions on Information Forensics and
Security, vol. 1, no. 2, pp. 205–214, 2006.

[28] M. Goljan, J. Fridrich, and T. Filler, “Large scale test of sensor finger-
print camera identification,” Media forensics and security, vol. 7254, p.
72540I, 2009.

[29] K. Kurosawa, K. Kuroki, and N. Saitoh, “CCD fingerprint method-
identification of a video camera from videotaped images,” in ICIP, 1999.

[30] T. Filler, J. Fridrich, and M. Goljan, “Using sensor pattern noise for
camera model identification,” in ICIP, 2008.

[31] D. Valsesia, G. Coluccia, T. Bianchi, and E. Magli, “Compressed finger-
print matching and camera identification via random projections,” IEEE
Transactions on Information Forensics and Security, vol. 10, no. 7, pp.
1472–1485, 2015.

[32] J. Lukáš, J. Fridrich, and M. Goljan, “Detecting digital image forgeries
using sensor pattern noise,” Security, Steganography, and Watermarking
of Multimedia Contents VIII, vol. 6072, p. 60720Y, 2006.

[33] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, “Determining image origin
and integrity using sensor noise,” IEEE Transactions on Information
Forensics and Security, vol. 3, no. 1, pp. 74–90, 2008.

[34] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-DF: A large-scale
challenging dataset for deepfake forensics,” in CVPR, 2020.

[35] D. Cozzolino and L. Verdoliva, “Noiseprint: a CNN-based camera model
fingerprint,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 144–159, 2019.

[36] T. K. Moon, “The expectation-maximization algorithm,” Signal process-
ing magazine, vol. 13, no. 6, pp. 47–60, 1996.

[37] L. Chai, D. Bau, S.-N. Lim, and P. Isola, “What makes fake images
detectable? Understanding properties that generalize,” in ECCV, 2020.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS,
2017.

[39] Y. Nirkin, I. Masi, A. T. Tuan, T. Hassner, and G. Medioni, “On face
segmentation, face swapping, and face perception,” in FGR. IEEE,
2018, pp. 98–105.

[40] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks in
computer vision: A survey and taxonomy,” ACM Computing Surveys,
vol. 54, no. 2, 2021.

[41] A. Jabbar, X. Li, and B. Omar, “A survey on generative adver-
sarial networks: Variants, applications, and training,” arXiv preprint
arXiv:2006.05132, 2020.

[42] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in ICCV, 2015.

[43] L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of the web],” Signal Processing Magazine, vol. 29,
no. 6, pp. 141–142, 2012.

[44] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in CVPR, 2009.

[46] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in ICCV, 2017.

[47] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[48] A. Jourabloo, Y. Liu, and X. Liu, “Face de-spoofing: Anti-spoofing via
noise modeling,” in ECCV, 2018.

[49] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “MnasNet: Platform-aware neural architecture search for
mobile,” in CVPR, 2019.

[50] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in ICML, 2018.

[51] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in ECCV, 2018.

[52] P. Bholowalia and A. Kumar, “Ebk-means: A clustering technique based
on elbow method and k-means in wsn,” International Journal of Com-
puter Applications, vol. 105, no. 9, 2014.

[53] T. M. Kodinariya and P. R. Makwana, “Review on determining number
of cluster in k-means clustering,” International Journal, vol. 1, no. 6, pp.
90–95, 2013.

[54] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “LSUN: Construction of a
large-scale image dataset using deep learning with humans in the loop,”
arXiv preprint arXiv:1506.03365, 2015.

[55] A. K. Srivastava, V. K. Srivastava, and A. Ullah, “The coefficient of
determination and its adjusted version in linear regression models,”
Econometric reviews, vol. 14, no. 2, pp. 229–240, 1995.

[56] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[57] G. Forman and M. Scholz, “Apples-to-apples in cross-validation studies:
pitfalls in classifier performance measurement,” Association for Com-
puting Machinery SIGKDD Explorations Newsletter, vol. 12, no. 1, pp.
49–57, 2010.

[58] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data–
recommendations for the use of performance metrics,” in ACII, 2013.

[59] X. Han, V. Morariu, P. I. Larry Davis et al., “Two-stream neural networks
for tampered face detection,” in CVPRW, 2017.

[60] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “MesoNet: a compact
facial video forgery detection network,” in WIFS, 2018.

[61] F. Matern, C. Riess, and M. Stamminger, “Exploiting visual artifacts to
expose deepfakes and face manipulations,” in WACVW, 2019.

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 15

[62] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[63] H. H. Nguyen, F. Fang, J. Yamagishi, and I. Echizen, “Multi-task learning
for detecting and segmenting manipulated facial images and videos,” in
BTAS, 2019.

[64] H. H. Nguyen, J. Yamagishi, and I. Echizen, “Capsule-forensics: Using
capsule networks to detect forged images and videos,” in ICASSP, 2019.

[65] X. Yang, Y. Li, and S. Lyu, “Exposing deep fakes using inconsistent head
poses,” in ICASSP, 2019.

[66] Y. Li and S. Lyu, “Exposing DeepFake videos by detecting face warping
artifacts,” in CVPRW, 2019.

[67] L. Sirovich and M. Kirby, “Low-dimensional procedure for the charac-
terization of human faces,” Journal of the Optical Society of America,
vol. 4, no. 3, pp. 519–524, 1987.

[68] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks,” in ICLR, 2018.

[69] C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos, “MMD
GAN: Towards deeper understanding of moment matching network,” in
NeurIPS, 2017.

[70] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshmi-
narayanan, S. Hoyer, and R. Munos, “The cramer distance as a solution
to biased wasserstein gradients,” arXiv preprint arXiv:1705.10743, 2017.

[71] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,” International Journal
of Security and Networks, vol. 10, no. 3, pp. 137–150, 2015.

[72] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in SP, 2017.

[73] B. Škrlj, S. Džeroski, N. Lavrač, and M. Petkovič, “Feature importance
estimation with self-attention networks,” in ECAI, 2019.

[74] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva, “A bayesian-MRF
approach for PRNU-based image forgery detection,” IEEE Transactions
on Information Forensics and Security, vol. 9, no. 4, pp. 554–567, 2014.

[75] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “Image forgery local-
ization through the fusion of camera-based, feature-based and pixel-based
techniques,” in ICIP, 2014.

[76] S. Chakraborty and M. Kirchner, “PRNU-based image manipulation
localization with discriminative random fields,” Electronic Imaging, vol.
2017, no. 7, pp. 113–120, 2017.

[77] P. Korus and J. Huang, “Multi-scale analysis strategies in PRNU-based
tampering localization,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 4, pp. 809–824, 2016.

[78] D. Berthelot, T. Schumm, and L. Metz, “BEGAN: Boundary equilib-
rium generative adversarial networks,” arXiv preprint arXiv:1703.10717,
2017.

[79] H. Kim and A. Mnih, “Disentangling by factorising,” in ICML, 2018.
[80] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,

S. Mohamed, and A. Lerchner, “β-VAE: Learning basic visual concepts
with a constrained variational framework,” in ICLR, 2017.

[81] C. H. Lin, C.-C. Chang, Y.-S. Chen, D.-C. Juan, W. Wei, and H.-T.
Chen, “COCO-GAN: generation by parts via conditional coordinating,”
in ICCV, 2019.

[82] Y. Yu, Z. Gong, P. Zhong, and J. Shan, “Unsupervised representation
learning with deep convolutional neural network for remote sensing
images,” in ICIG, 2017.

[83] X. Hou, L. Shen, K. Sun, and G. Qiu, “Deep feature consistent variational
autoencoder,” in WACV, 2017.

[84] L. Tran, X. Yin, and X. Liu, “Disentangled representation learning GAN
for pose-invariant face recognition,” in CVPR, 2017.

[85] X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker, “Towards large-pose
face frontalization in the wild,” in ICCV, 2017.

[86] Y. Nirkin, Y. Keller, and T. Hassner, “FSGAN: Subject agnostic face
swapping and reenactment,” in ICCV, 2019.

[87] R. Wang, A. Cully, H. J. Chang, and Y. Demiris, “MAGAN: Mar-
gin adaptation for generative adversarial networks,” arXiv preprint
arXiv:1704.03817, 2017.

[88] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li, “Mode regularized
generative adversarial networks,” in ICLR, 2017.

[89] A. F. Ansari, J. Scarlett, and H. Soh, “A characteristic function approach
to deep implicit generative modeling,” in CVPR, 2020.

[90] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in ICML, 2019.

[91] P. Zhu, R. Abdal, Y. Qin, and P. Wonka, “SEAN: Image synthesis with
semantic region-adaptive normalization,” in CVPR, 2020.

[92] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “StarGAN v2: Diverse image
synthesis for multiple domains,” in CVPR, 2020.

[93] M. Liu, Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo, and S. Wen, “STGAN:
A unified selective transfer network for arbitrary image attribute editing,”
in CVPR, 2019.

[94] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of StyleGAN,” in CVPR,
2020.

[95] R. Huang, S. Zhang, T. Li, and R. He, “Beyond face rotation: Global and
local perception GAN for photorealistic and identity preserving frontal
view synthesis,” in ICCV, 2017.

[96] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther,
“Autoencoding beyond pixels using a learned similarity metric,” in ICML,
2016.

[97] C. Chen, Z. Xiong, X. Liu, and F. Wu, “Camera trace erasing,” in CVPR,
2020.

[98] L. Zhao, M. Zhang, H. Ding, and X. Cui, “Mff-net: Deepfake detection
network based on multi-feature fusion,” Entropy, vol. 23, no. 12, p. 1692,
2021.

Vishal Asnani is pursuing his Ph. D. degree in
the Computer Science and Engineering depart-
ment from Michigan State University since 2021.
He received his Bachelor’s degree in Electrical
and Instrumentation Engineering from Birla In-
stitute of technology and Science, Pilani, India
in 2019. His research interests include computer
vision and machine learning with a focus on
the studying of generative models and deepfake
detection.

Xi Yin is a Research Scientist at Facebook
AI Applied Research team. She received her
Ph.D. degree in Computer Science and Engi-
neering from Michigan State University in 2018.
Before joining Facebook AI, she was an Se-
nior Applied Scientist at Microsoft Cloud and
AI. Her research is focused on computer vision,
deep learning, vision and language. She has co-
authored 18 papers in top vision conferences
and journals, and filed 3 U.S. patents. She has
received Best Student Paper Award at WACV

2014. She is an Area Chair for IJCB 2021 and ICCV 2021.

Tal Hassner Tal Hassner received his M.Sc. and
Ph.D. degrees in applied mathematics and com-
puter science from the Weizmann Institute of
Science in 2002 and 2006, respectively. In 2008
he joined the Department of Math. and Com-
puter Science at The Open Univ. of Israel where
he was an Associate Professor until 2018. From
2015 to 2018, he was a senior computer scientist
at the Information Sciences Institute (ISI) and
a Visiting Research Associate Professor at the
Institute for Robotics and Intelligent Systems,

Viterbi School of Engineering, both at USC, CA, USA. From 2018 to
2019, he was a principal applied scientist at AWS Rekognition. Since
2019 he is an applied research lead at Facebook AI, supporting both
the text and people photo understanding teams. He has been a program
chair at WACV’18 and ICCV’21, workshop chair at CVPER’20, tutorial
chair at ICCV’17 and ECCV’22, and area chair in CVPR, ECCV, AAAI,
and others. Finally, he is an associate editor at IEEE TPAMI and TBIOM.

ASNANI ET AL. REVERSE ENGINEERING OF GENERATIVE MODELS 16

Xiaoming Liu is a MSU Foundation Professor
at the Department of Computer Science and
Engineering of Michigan State University. He re-
ceived the Ph.D. degree in Electrical and Com-
puter Engineering from Carnegie Mellon Univer-
sity in 2004. Before joining MSU in Fall 2012,
he was a research scientist at General Electric
(GE) Global Research. His research interests
include computer vision, machine learning, and
biometrics. As a co-author, he is a recipient of
Best Industry Related Paper Award runner-up at

ICPR 2014, Best Student Paper Award at WACV 2012 and 2014, Best
Poster Award at BMVC 2015, and Michigan State University College of
Engineering Withrow Endowed Distinguished Scholar Award. He has
been the Area Chair for numerous conferences, including CVPR, ICCV,
ECCV, ICLR, NeurIPS, the Program CO-Chair of WACV’18, BTAS’18,
AVSS’22 conferences, and General Co-Chair of FG’23 conference. He is
an Associate Editor of Pattern Recognition Letters, Pattern Recognition,
and IEEE Transactions on Image Processing. He has authored more
than 150 scientific publications, and has filed 29 U.S. patents. He is a
fellow of IAPR.

